Ke Coby Wang (UNC Chapel Hill), Michael K. Reiter (UNC Chapel Hill)

We present a framework by which websites can coordinate to make it difficult for users to set similar passwords at these websites, in an effort to break the culture of password reuse on the web today.
Though the design of such a framework is fraught with risks to users’ security and privacy, we show that these risks can be effectively mitigated through careful scoping of the goals for such a framework and through principled design. At the core of our framework is a private set-membership-test protocol that enables one website to determine, upon a user setting a password for use at it, whether that user has already set a similar password at another participating website, but with neither side disclosing to the other the password(s) it employs in the protocol. Our framework then layers over this protocol a collection of techniques to mitigate the leakage necessitated by such a test. We verify via probabilistic model checking that these techniques are effective in maintaining account security, and since these mechanisms are consistent with common user experience today, our framework should be unobtrusive to users who do not reuse similar passwords across websites (e.g., due to having adopted a password manager). Through a working implementation of our framework and optimization of its parameters based on insights of how passwords tend to be reused, we show that our design can meet the scalability challenges facing such a service.

View More Papers

Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via...

A. Theodore Markettos (University of Cambridge), Colin Rothwell (University of Cambridge), Brett F. Gutstein (Rice University), Allison Pearce (University of Cambridge), Peter G. Neumann (SRI International), Simon W. Moore (University of Cambridge), Robert N. M. Watson (University of Cambridge)

Read More

IoTGuard: Dynamic Enforcement of Security and Safety Policy in...

Z. Berkay Celik (Penn State University), Gang Tan (Penn State University), Patrick McDaniel (Penn State University)

Read More

rORAM: Efficient Range ORAM with O(log2 N) Locality

Anrin Chakraborti (Stony Brook University), Adam J. Aviv (United States Naval Academy), Seung Geol Choi (United States Naval Academy), Travis Mayberry (United States Naval Academy), Daniel S. Roche (United States Naval Academy), Radu Sion (Stony Brook University)

Read More

Latex Gloves: Protecting Browser Extensions from Probing and Revelation...

Alexander Sjösten (Chalmers University of Technology), Steven Van Acker (Chalmers University of Technology), Pablo Picazo-Sanchez (Chalmers University of Technology), Andrei Sabelfeld (Chalmers University of Technology)

Read More