Guanlong Wu (Southern University of Science and Technology), Zheng Zhang (ByteDance Inc.), Yao Zhang (ByteDance Inc.), Weili Wang (Southern University of Science and Technolog), Jianyu Niu (Southern University of Science and Technolog), Ye Wu (ByteDance Inc.), Yinqian Zhang (Southern University of Science and Technology (SUSTech))

Large Language Models (LLMs), which laid the groundwork for Artificial General Intelligence (AGI), have recently gained significant traction in academia and industry due to their disruptive applications. In order to enable scalable applications and efficient resource management, various multi-tenant LLM serving frameworks have been proposed, in which the LLM caters to the needs of multiple users simultaneously. One notable mechanism in recent works, such as SGLang and vLLM, is sharing the Key-Value (KV) cache for identical token sequences among multiple users, saving both memory and computation. This paper presents the first investigation on security risks
associated with multi-tenant LLM serving. We show that the state-of-the-art mechanisms of KV cache sharing may lead to new side channel attack vectors, allowing unauthorized reconstruction
of user prompts and compromising sensitive user information among mutually distrustful users. Specifically, we introduce our attack, PROMPTPEEK, and apply it to three scenarios where the
adversary, with varying degrees of prior knowledge, is capable of reverse-engineering prompts from other users. This study underscores the need for careful resource management in multi-tenant LLM serving and provides critical insights for future security enhancement.

View More Papers

Do We Really Need to Design New Byzantine-robust Aggregation...

Minghong Fang (University of Louisville), Seyedsina Nabavirazavi (Florida International University), Zhuqing Liu (University of North Texas), Wei Sun (Wichita State University), Sundararaja Iyengar (Florida International University), Haibo Yang (Rochester Institute of Technology)

Read More

Oreo: Protecting ASLR Against Microarchitectural Attacks

Shixin Song (Massachusetts Institute of Technology), Joseph Zhang (Massachusetts Institute of Technology), Mengjia Yan (Massachusetts Institute of Technology)

Read More

The Forking Way: When TEEs Meet Consensus

Annika Wilde (Ruhr University Bochum), Tim Niklas Gruel (Ruhr University Bochum), Claudio Soriente (NEC Laboratories Europe), Ghassan Karame (Ruhr University Bochum)

Read More

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More