Yue Xiao (IBM Research), Dhilung Kirat (IBM Research), Douglas Lee Schales (IBM Research), Jiyong Jang (IBM Research), Luyi Xing (Indiana University Bloomington), Xiaojing Liao (Indiana University)

Abstract—A Software Bill of Materials (SBOM) is a detailed inventory that lists the dependencies that make up a software product. Accurate, complete, and up-to-date SBOMs are essential for vulnerability management, reducing license compliance risks, and maintaining high software integrity. The US National Institute of Standards and Technology (NTIA) has established minimum requirements for SBOMs to comply with, especially the correctness and completeness of listed dependencies in SBOMs. However, these requirements remain unexamined in practice. This paper presents the first systematic study on the landscape of SBOMs, including their prevalence, release trends, and characteristics in the Java ecosystem. We developed an end-to-end tool to evaluate the completeness and accuracy of dependencies in SBOMs. Our tool analyzed 25,882 SBOMs and associated JAR files, identifying that 7,907 SBOMs failed to disclose direct dependencies, highlighting the prevalence and severity of SBOM noncompliance issues. Furthermore, 4.97% of these omitted dependencies were vulnerable, leaving software susceptible to potential exploits. Through detailed measurement studies and analysis of root causes, this research uncovers significant security implications of non-compliant SBOMs, especially concerning vulnerability management. These findings, crucial for enhancing SBOM compliance assurance, are being responsibly reported to relevant stakeholders.

View More Papers

Automated Mass Malware Factory: The Convergence of Piggybacking and...

Heng Li (Huazhong University of Science and Technology), Zhiyuan Yao (Huazhong University of Science and Technology), Bang Wu (Huazhong University of Science and Technology), Cuiying Gao (Huazhong University of Science and Technology), Teng Xu (Huazhong University of Science and Technology), Wei Yuan (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)

Read More

ERW-Radar: An Adaptive Detection System against Evasive Ransomware by...

Lingbo Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Yuhui Zhang (Institute of Information Engineering, Chinese Academy of Sciences), Zhilu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Fengkai Yuan (Institute of Information Engineering, CAS), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

Careful About What App Promotion Ads Recommend! Detecting and...

Shang Ma (University of Notre Dame), Chaoran Chen (University of Notre Dame), Shao Yang (Case Western Reserve University), Shifu Hou (University of Notre Dame), Toby Jia-Jun Li (University of Notre Dame), Xusheng Xiao (Arizona State University), Tao Xie (Peking University), Yanfang Ye (University of Notre Dame)

Read More