Yue Xiao (IBM Research), Dhilung Kirat (IBM Research), Douglas Lee Schales (IBM Research), Jiyong Jang (IBM Research), Luyi Xing (Indiana University Bloomington), Xiaojing Liao (Indiana University)

Abstract—A Software Bill of Materials (SBOM) is a detailed inventory that lists the dependencies that make up a software product. Accurate, complete, and up-to-date SBOMs are essential for vulnerability management, reducing license compliance risks, and maintaining high software integrity. The US National Institute of Standards and Technology (NTIA) has established minimum requirements for SBOMs to comply with, especially the correctness and completeness of listed dependencies in SBOMs. However, these requirements remain unexamined in practice. This paper presents the first systematic study on the landscape of SBOMs, including their prevalence, release trends, and characteristics in the Java ecosystem. We developed an end-to-end tool to evaluate the completeness and accuracy of dependencies in SBOMs. Our tool analyzed 25,882 SBOMs and associated JAR files, identifying that 7,907 SBOMs failed to disclose direct dependencies, highlighting the prevalence and severity of SBOM noncompliance issues. Furthermore, 4.97% of these omitted dependencies were vulnerable, leaving software susceptible to potential exploits. Through detailed measurement studies and analysis of root causes, this research uncovers significant security implications of non-compliant SBOMs, especially concerning vulnerability management. These findings, crucial for enhancing SBOM compliance assurance, are being responsibly reported to relevant stakeholders.

View More Papers

Crosstalk-induced Side Channel Threats in Multi-Tenant NISQ Computers

Ruixuan Li (Choudhury), Chaithanya Naik Mude (University of Wisconsin-Madison), Sanjay Das (The University of Texas at Dallas), Preetham Chandra Tikkireddi (University of Wisconsin-Madison), Swamit Tannu (University of Wisconsin, Madison), Kanad Basu (University of Texas at Dallas)

Read More

SketchFeature: High-Quality Per-Flow Feature Extractor Towards Security-Aware Data Plane

Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Read More

DUMPLING: Fine-grained Differential JavaScript Engine Fuzzing

Liam Wachter (EPFL), Julian Gremminger (EPFL), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Mathias Payer (EPFL), Flavio Toffalini (EPFL)

Read More