Lukas Maar (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Thomas Steinbauer (Graz University of Technology), Daniel Gruss (Graz University of Technology), Stefan Mangard (Graz University of Technology)

The sharing of hardware elements, such as caches, is known to introduce microarchitectural side-channel leakage. One approach to eliminate this leakage is to not share hardware elements across security domains. However, even under the assumption of leakage-free hardware, it is unclear whether other critical system components, like the operating system, introduce software-caused side-channel leakage.

In this paper, we present a novel generic software side-channel attack, KernelSnitch, targeting kernel data structures such as hash tables and trees. These structures are commonly used to store both kernel and user information, e.g., metadata for userspace locks. KernelSnitch exploits that these data structures are variable in size, ranging from an empty state to a theoretically arbitrary amount of elements. Accessing these structures requires a variable amount of time depending on the number of elements, i.e., the occupancy level. This variance constitutes a timing side channel, observable from user space by an unprivileged, isolated attacker. While the timing differences are very low compared to the syscall runtime, we demonstrate and evaluate methods to amplify these timing differences reliably. In three case studies, we show that KernelSnitch allows unprivileged and isolated attackers to leak sensitive information from the kernel and activities in other processes. First, we demonstrate covert channels with transmission rates up to 580 kbit/s. Second, we perform a kernel heap pointer leak in less than 65 s by exploiting the specific indexing that Linux is using in hash tables. Third, we demonstrate a website fingerprinting attack, achieving an F1 score of more than 89 %, showing that activity in other user programs can be observed using KernelSnitch. Finally, we discuss mitigations for our hardware-agnostic attacks.

View More Papers

Scale-MIA: A Scalable Model Inversion Attack against Secure Federated...

Shanghao Shi (Virginia Tech), Ning Wang (University of South Florida), Yang Xiao (University of Kentucky), Chaoyu Zhang (Virginia Tech), Yi Shi (Virginia Tech), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

Secure Transformer Inference Made Non-interactive

Jiawen Zhang (Zhejiang University), Xinpeng Yang (Zhejiang University), Lipeng He (University of Waterloo), Kejia Chen (Zhejiang University), Wen-jie Lu (Zhejiang University), Yinghao Wang (Zhejiang University), Xiaoyang Hou (Zhejiang University), Jian Liu (Zhejiang University), Kui Ren (Zhejiang University), Xiaohu Yang (Zhejiang University)

Read More

NDSS Symposium 2025 Welcome and Opening Remarks

General Chairs: David Balenson, USC Information Sciences Institute and Heng Yin, University of California, Riverside Program Chairs: Christina Pöpper, New York University Abu Dhabi and Hamed Okhravi, MIT Lincoln Laboratory Artifact Evaluation Chairs: Daniele Cono D’Elia, Sapienza University and Mathy Vanhoef, KU Leuven

Read More

Oreo: Protecting ASLR Against Microarchitectural Attacks

Shixin Song (Massachusetts Institute of Technology), Joseph Zhang (Massachusetts Institute of Technology), Mengjia Yan (Massachusetts Institute of Technology)

Read More