Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Current black-box backdoor attacks in convolutional neural networks formulate attack objective(s) as textit{single-objective} optimization problems in textit{single domain}.
Designing triggers in single domain harms semantics and trigger robustness as well as introduces visual and spectral anomaly.
This work proposes a multi-objective black-box backdoor attack in dual domains via evolutionary algorithm (LADDER), the first instance of achieving multiple attack objectives simultaneously by optimizing triggers without requiring prior knowledge about victim model.
In particular, we formulate LADDER as a multi-objective optimization problem (MOP) and solve it via multi-objective evolutionary algorithm (MOEA).
MOEA maintains a population of triggers with trade-offs among attack objectives and uses non-dominated sort to drive triggers toward optimal solutions.
We further apply preference-based selection to MOEA to exclude impractical triggers.
LADDER investigates a new dual-domain perspective for trigger stealthiness by minimizing the anomaly between clean and poisoned samples in the spectral domain.
Lastly, the robustness against preprocessing operations is achieved by pushing triggers to low-frequency regions.
Extensive experiments comprehensively showcase that LADDER achieves attack effectiveness of at least 99%, attack robustness with 90.23% (50.09% higher than state-of-the-art attacks on average), superior natural stealthiness (1.12$times$ to 196.74$times$ improvement) and excellent spectral stealthiness (8.45$times$ enhancement) as compared to current stealthy attacks by the average $l_2$-norm across 5 public datasets.

View More Papers

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More

Truman: Constructing Device Behavior Models from OS Drivers to...

Zheyu Ma (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; EPFL; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Qiang Liu (EPFL), Zheming Li (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Tingting Yin (Zhongguancun…

Read More

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More

A Key-Driven Framework for Identity-Preserving Face Anonymization

Miaomiao Wang (Shanghai University), Guang Hua (Singapore Institute of Technology), Sheng Li (Fudan University), Guorui Feng (Shanghai University)

Read More