Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (KU Leuven), Claudia Diaz (KU Leuven)

Anonymous communication systems such as mix networks achieve anonymity at the expense of latency that is introduced to alter the flow of packets and hinder their tracing. A high latency however has a negative impact on usability. In this work, we propose LARMix, a novel latency-aware routing scheme for mixnets that reduces propagation latency with a limited impact on anonymity. LARMix can achieve this while also load balancing the traffic in the network. We additionally show how a network can be configured to maximize anonymity while meeting an average end-to-end latency constraint. Lastly, we perform a security analysis studying various adversarial strategies and conclude that LARMix does not significantly increase adversarial advantage as long as the adversary is not able to selectively compromise mixnodes after the LARMix routing policy has been computed.

View More Papers

CAGE: Complementing Arm CCA with GPU Extensions

Chenxu Wang (Southern University of Science and Technology (SUSTech) and The Hong Kong Polytechnic University), Fengwei Zhang (Southern University of Science and Technology (SUSTech)), Yunjie Deng (Southern University of Science and Technology (SUSTech)), Kevin Leach (Vanderbilt University), Jiannong Cao (The Hong Kong Polytechnic University), Zhenyu Ning (Hunan University), Shoumeng Yan (Ant Group), Zhengyu He (Ant…

Read More

PriSrv: Privacy-Enhanced and Highly Usable Service Discovery in Wireless...

Yang Yang (School of Computing and Information Systems, Singapore Management University, Singapore), Robert H. Deng (School of Computing and Information Systems, Singapore Management University, Singapore), Guomin Yang (School of Computing and Information Systems, Singapore Management University, Singapore), Yingjiu Li (Department of Computer Science, University of Oregon, USA), HweeHwa Pang (School of Computing and Information Systems,…

Read More

WIP: Threat Modeling Laser-Induced Acoustic Interference in Computer Vision-Assisted...

Nina Shamsi (Northeastern University), Kaeshav Chandrasekar, Yan Long, Christopher Limbach (University of Michigan), Keith Rebello (Boeing), Kevin Fu (Northeastern University)

Read More