Jiangrong Wu (Sun Yat-sen University), Yuhong Nan (Sun Yat-sen University), Luyi Xing (Indiana University Bloomington), Jiatao Cheng (Sun Yat-sen University), Zimin Lin (Alibaba Group), Zibin Zheng (Sun Yat-sen University), Min Yang (Fudan University)

Cross-app content sharing is one of the prominent features widely used in mobile apps. For example, a short video from one app can be shared to another (e.g., a messaging app) and further viewed by other users. In many cases, such Cross-app content sharing activities could have privacy implications for both the sharer and sharee, such as exposing app users' personal interests.

In this paper, we provide the first in-depth study on the privacy implications of Cross-app content sharing (as we call Cracs) activities in the mobile ecosystem. Our research showed that during the sharing process, the adversary can not only track and infer user interests as traditional web trackers but also cause other severe privacy implications to app users. More specifically, due to multiple privacy-intrusive designs and implementations of Cracs, an adversary can easily reveal a user's social relations to an outside party, or unnecessarily expose user identities and her associated personal data (e.g., user accounts in another app). Such privacy implications are indeed a concern for app users, as confirmed by a user study we have performed with 300 participants.

To further evaluate the impact of our identified privacy implications at large, we have designed an automatic pipeline named Shark, combined with static analysis and dynamic analysis to effectively identify whether a given app introduces unnecessary data exposure in Cracs. We analyzed 300 top downloaded apps collected from app stores in both the US and China. The analysis results showed that over 55% of the apps from China and 10% from the US are indeed problematic.

View More Papers

DorPatch: Distributed and Occlusion-Robust Adversarial Patch to Evade Certifiable...

Chaoxiang He (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Bin B. Zhu (Microsoft Research), Yimiao Zeng (Huazhong University of Science and Technology), Hanqing Hu (Huazhong University of Science and Technology), Xiaofan Bai (Huazhong University of Science and Technology), Hai Jin (Huazhong University of Science and Technology), Dongmei Zhang…

Read More

ActiveDaemon: Unconscious DNN Dormancy and Waking Up via User-specific...

Ge Ren (Shanghai Jiao Tong University), Gaolei Li (Shanghai Jiao Tong University), Shenghong Li (Shanghai Jiao Tong University), Libo Chen (Shanghai Jiao Tong University), Kui Ren (Zhejiang University)

Read More

5G-Spector: An O-RAN Compliant Layer-3 Cellular Attack Detection Service

Haohuang Wen (The Ohio State University), Phillip Porras (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International), Zhiqiang Lin (The Ohio State University)

Read More

LARMix: Latency-Aware Routing in Mix Networks

Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (KU Leuven), Claudia Diaz (KU Leuven)

Read More