Trevor Smith (Brigham Young University), Luke Dickenson (Brigham Young University), Kent Seamons (Brigham Young University)

Current revocation strategies have numerous issues that prevent their widespread adoption and use, including scalability, privacy, and new infrastructure requirements. Consequently, revocation is often ignored, leaving clients vulnerable to man-in-the-middle attacks.

This paper presents Let's Revoke, a scalable global revocation strategy that addresses the concerns of current revocation checking. Let's Revoke introduces a new unique identifier to each certificate that serves as an index to a dynamically-sized bit vector containing revocation status information. The bit vector approach enables significantly more efficient revocation checking for both clients and certificate authorities. We compare Let's Revoke to existing revocation schemes and show that it requires less storage and network bandwidth than other systems, including those that only cover a fraction of the global certificate space. We further demonstrate through simulations that Let's Revoke scales linearly up to ten billion certificates, even during mass revocation events.

View More Papers

CDN Judo: Breaking the CDN DoS Protection with Itself

Run Guo (Tsinghua University), Weizhong Li (Tsinghua University), Baojun Liu (Tsinghua University), Shuang Hao (University of Texas at Dallas), Jia Zhang (Tsinghua University), Haixin Duan (Tsinghua University), Kaiwen Sheng (Tsinghua University), Jianjun Chen (ICSI), Ying Liu (Tsinghua University)

Read More

ProtectIOn: Root-of-Trust for IO in Compromised Platforms

Aritra Dhar (ETH Zurich), Enis Ulqinaku (ETH Zurich), Kari Kostiainen (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

Proof of Storage-Time: Efficiently Checking Continuous Data Availability

Giuseppe Ateniese (Stevens Institute of Technology), Long Chen (New Jersey Institute of Technology), Mohammard Etemad (Stevens Institute of Technology), Qiang Tang (New Jersey Institute of Technology)

Read More

BLAZE: Blazing Fast Privacy-Preserving Machine Learning

Arpita Patra (Indian Institute of Science, Bangalore), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More