Fengchen Yang (Zhejiang University), Wenze Cui (Zhejiang University), Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Fluorescent lamps are almost everywhere for electric lighting in daily life, across private and public scenarios. Our study uncovers a new electromagnetic interference (EMI) attack surface that these light sources are actually able to manipulate nearby IoT devices in a contactless way. Different from previous EMI attempts requiring a specialized metal antenna as the emission source, which can easily alert victims, we introduce LightAntenna that leverages unaltered everyday fluorescent lamps to launch concealed EMI attacks. To understand why and how fluorescent lamps can be exploited as malicious antennas, we systematically characterize the rationale of EMI emission from fluorescent lamps and identify their capabilities and limits in terms of intensity and frequency response. Moreover, we carefully design a covert method of injecting high-frequency signals into the fluorescent tube via power line transmission. In this way, LightAntenna can realize controllable EMI attacks even across rooms and at a distance of up to 20 m. Our extensive experiments demonstrate the generality, practicality, tunability, and remote attack capability of LightAntenna, which successfully interferes with various types of sensors and IoT devices. In summary, our study provides a comprehensive analysis of the LightAntenna mechanism and proposes defensive strategies to mitigate this emerging attack surface.

View More Papers

A New PPML Paradigm for Quantized Models

Tianpei Lu (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Bingsheng Zhang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Xiaoyuan Zhang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More

cozy: Comparative Symbolic Execution for Binary Programs

Caleb Helbling, Graham Leach-Krouse, Sam Lasser, Greg Sullivan (Draper)

Read More

type++: Prohibiting Type Confusion with Inline Type Information

Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Read More

Mixnets on a Tightrope: Quantifying the Leakage of Mix...

Sebastian Meiser, Debajyoti Das, Moritz Kirschte, Esfandiar Mohammadi, Aniket Kate

Read More