Khashayar Khajavi (Simon Fraser University), Tao Wang (Simon Fraser University)

Website fingerprinting (WF) attacks remain a significant threat to encrypted traffic, prompting the development of a wide range of defenses. Among these, two prominent classes are regularization-based defenses, which shape traffic using fixed padding rules, and supersequence-based approaches, which conceal traces among predefined patterns.
In this work, we present a unified framework for designing an adaptive WF defense that combines the effectiveness of regularization with the provable security of supersequence-style grouping.
The scheme first extracts behavioural patterns from traces and clusters them into $(k,l)$-diverse anonymity sets; an early-time-series classifier (adapted from ECDIRE) then switches from a conservative global set of regularization parameters to the lighter, set-specific parameters.
We instantiate the design as emph{Adaptive Tamaraw}, a variant of Tamaraw that assigns padding parameters on a per-cluster basis while retaining its original information-theoretic guarantee. Comprehensive experiments on public real-world datasets confirm the benefits.
By tuning $k$, operators can trade privacy for efficiency: in its high-privacy mode, Adaptive Tamaraw pushes the bound on any attacker's accuracy below textbf{30%}, whereas in efficiency-centred settings it cuts total overhead by textbf{99} percentage points compared with classic Tamaraw.

View More Papers

Indicator of Benignity: An Industry View of False Positive...

Daiping Liu (Palo Alto Networks, Inc.), Danyu Sun (University of California, Irvine), Zhenhua Chen (Palo Alto Networks, Inc.), Shu Wang (Palo Alto Networks, Inc.), Zhou Li (University of California, Irvine)

Read More

SAGA: A Security Architecture for Governing AI Agentic Systems

Georgios Syros (Northeastern University), Anshuman Suri (Northeastern University), Jacob Ginesin (Northeastern University), Cristina Nita-Rotaru (Northeastern University), Alina Oprea (Northeastern University)

Read More