Xigao Li (Stony Brook University), Amir Rahmati (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Given the meteoric rise of large media platforms (such as YouTube) on the web, it is no surprise that attackers seek to abuse them in order to easily reach hundreds of millions of users. Among other social-engineering attacks perpetrated on these platforms, comment scams have increased in popularity despite the presence of mechanisms that purportedly give content creators control over their channel comments. In a comment scam, attackers set up script-controlled accounts that automatically post or reply to comments on media platforms, enticing users to contact them. Through the promise of free prizes and investment opportunities, attackers aim to steal financial assets from the end users who contact them.

In this paper, we present the first systematic, large-scale study of comment scams. We design and implement an infrastructure to collect a dataset of 8.8 million comments from 20 different YouTube channels over a 6-month period. We develop filters based on textual, graphical, and temporal features of comments and identify 206K scam comments from 10K unique accounts. Using this dataset, we present our analysis of scam campaigns, comment dynamics, and evasion techniques used by scammers. Lastly, through an IRB-approved study, we interact with 50 scammers to gain insights into their social-engineering tactics and payment preferences. Using transaction records on public blockchains, we perform a quantitative analysis of the financial assets stolen by scammers, finding that just the scammers that were part of our user study have stolen funds equivalent to millions of dollars. Our study demonstrates that existing scam-detection mechanisms are insufficient for curbing abuse, pointing to the need for better comment-moderation tools as well as other changes that would make it difficult for attackers to obtain tens of thousands of accounts on these large platforms.

View More Papers

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

Faster and Better: Detecting Vulnerabilities in Linux-based IoT Firmware...

Zicong Gao (State Key Laboratory of Mathematical Engineering and Advanced Computing), Chao Zhang (Tsinghua University), Hangtian Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Wenhou Sun (Tsinghua University), Zhizhuo Tang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Liehui Jiang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianjun Chen (Tsinghua…

Read More

The impact of data-heavy, post-quantum TLS 1.3 on the...

Panos Kampanakis and Will Childs-Klein (AWS)

Read More

NODLINK: An Online System for Fine-Grained APT Attack Detection...

Shaofei Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Feng Dong (Huazhong University of Science and Technology), Xusheng Xiao (Arizona State University), Haoyu Wang (Huazhong University of Science and Technology), Fei Shao (Case Western Reserve University), Jiedong Chen (Sangfor Technologies Inc.), Yao Guo (Key Laboratory of High-Confidence Software Technologies…

Read More