Xigao Li (Stony Brook University), Amir Rahmati (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Given the meteoric rise of large media platforms (such as YouTube) on the web, it is no surprise that attackers seek to abuse them in order to easily reach hundreds of millions of users. Among other social-engineering attacks perpetrated on these platforms, comment scams have increased in popularity despite the presence of mechanisms that purportedly give content creators control over their channel comments. In a comment scam, attackers set up script-controlled accounts that automatically post or reply to comments on media platforms, enticing users to contact them. Through the promise of free prizes and investment opportunities, attackers aim to steal financial assets from the end users who contact them.

In this paper, we present the first systematic, large-scale study of comment scams. We design and implement an infrastructure to collect a dataset of 8.8 million comments from 20 different YouTube channels over a 6-month period. We develop filters based on textual, graphical, and temporal features of comments and identify 206K scam comments from 10K unique accounts. Using this dataset, we present our analysis of scam campaigns, comment dynamics, and evasion techniques used by scammers. Lastly, through an IRB-approved study, we interact with 50 scammers to gain insights into their social-engineering tactics and payment preferences. Using transaction records on public blockchains, we perform a quantitative analysis of the financial assets stolen by scammers, finding that just the scammers that were part of our user study have stolen funds equivalent to millions of dollars. Our study demonstrates that existing scam-detection mechanisms are insufficient for curbing abuse, pointing to the need for better comment-moderation tools as well as other changes that would make it difficult for attackers to obtain tens of thousands of accounts on these large platforms.

View More Papers

MPCDiff: Testing and Repairing MPC-Hardened Deep Learning Models

Qi Pang (Carnegie Mellon University), Yuanyuan Yuan (HKUST), Shuai Wang (HKUST)

Read More

EMMasker: EM Obfuscation Against Website Fingerprinting

Mohammed Aldeen, Sisheng Liang, Zhenkai Zhang, Linke Guo (Clemson University), Zheng Song (University of Michigan – Dearborn), and Long Cheng (Clemson University)

Read More

On the Feasibility of CubeSats Application Sandboxing for Space...

Gabriele Marra (CISPA Helmholtz Center for Information Security), Ulysse Planta (CISPA Helmholtz Center for Information Security and Saarbrücken Graduate School of Computer Science), Philipp Wüstenberg (Chair of Space Technology, Technische Universität Berlin), Ali Abbasi (CISPA Helmholtz Center for Information Security)

Read More

AAKA: An Anti-Tracking Cellular Authentication Scheme Leveraging Anonymous Credentials

Hexuan Yu (Virginia Polytechnic Institute and State University), Changlai Du (Virginia Polytechnic Institute and State University), Yang Xiao (University of Kentucky), Angelos Keromytis (Georgia Institute of Technology), Chonggang Wang (InterDigital), Robert Gazda (InterDigital), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More