Tianhao Wang (Purdue University), Milan Lopuhaä-Zwakenberg (Eindhoven University of Technology), Zitao Li (Purdue University), Boris Skoric (Eindhoven University of Technology), Ninghui Li (Purdue University)

Local Differential Privacy (LDP) protects user privacy from the data collector. LDP protocols have been increasingly deployed in the industry. A basic building block is frequency oracle (FO) protocols, which estimate frequencies of values. While several FO protocols have been proposed, the design goal does not lead to optimal results for answering many queries. In this paper, we show that adding post-processing steps to FO protocols by exploiting the knowledge that all individual frequencies should be non-negative and they sum up to one can lead to significantly better accuracy for a wide range of tasks, including frequencies of individual values, frequencies of the most frequent values, and frequencies of subsets of values. We consider 10 different methods that exploit this knowledge differently. We establish theoretical relationships between some of them and conducted extensive experimental evaluations to understand which methods should be used for different query tasks.

View More Papers

MassBrowser: Unblocking the Censored Web for the Masses, by...

Milad Nasr (University of Massachusetts Amherst), Hadi Zolfaghari (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst), Amirhossein Ghafari (University of Massachusetts Amherst)

Read More

Decentralized Control: A Case Study of Russia

Reethika Ramesh (University of Michigan), Ram Sundara Raman (University of Michgan), Matthew Bernhard (University of Michigan), Victor Ongkowijaya (University of Michigan), Leonid Evdokimov (Independent), Anne Edmundson (Independent), Steven Sprecher (University of Michigan), Muhammad Ikram (Macquarie University), Roya Ensafi (University of Michigan)

Read More

On the Resilience of Biometric Authentication Systems against Random...

Benjamin Zi Hao Zhao (University of New South Wales and Data61 CSIRO), Hassan Jameel Asghar (Macquarie University and Data61 CSIRO), Mohamed Ali Kaafar (Macquarie University and Data61 CSIRO)

Read More

Snappy: Fast On-chain Payments with Practical Collaterals

Vasilios Mavroudis (University College London), Karl Wüst (ETH Zurich), Aritra Dhar (ETH Zurich), Kari Kostiainen (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More