Zhenfeng Zhang (Chinese Academy of Sciences, University of Chinese Academy of Sciences, and The Joint Academy of Blockchain Innovation), Yuchen Wang (Chinese Academy of Sciences and University of Chinese Academy of Sciences), Kang Yang (State Key Laboratory of Cryptology)

Shared credential is currently the most widespread form of end user authentication with its convenience, but it is also criticized for being vulnerable to credential database theft and phishing attacks. While several alternative mechanisms are proposed to offer strong authentication with cryptographic challenge-response protocols, they are cumbersome to use due to the need of tamper-resistant hardware modules at user end.

In this paper, we propose the first strong authentication mechanism without the reliance on tamper-resistant hardware at user end. A user authenticates with a password-based credential via generating designated-verifiable authentication tokens. Our scheme is resistant to offline dictionary attacks in spite that the attacker can steal the password-protected credentials, and thus can be implemented for general-purpose device.

More specifically, we first introduce and formalize the notion of Password-Based Credential (PBC), which models the resistance of offline attacks and the unforageability of authentication tokens even if attackers can see authentication tokens and capture password-wrapped credentials of honest users. We then present a highly-efficient construction of PBC using a “randomize-then-prove” approach, and prove its security. The construction doesn’t involve bilinear-pairings, and can be implemented with common cryptographic libraries for many platforms. We also present a technique to transform the PBC scheme to be publicly-verifiable, and present an application of PBC in federated identity systems to provide holder-of-key assertion mechanisms. Compared with current certificate-based approaches, it is more convenient and user-friendly, and can be used with the federation systems that employs privacy-preserving measures (e.g., Sign-in with Apple).

We also implement the PBC scheme and evaluate its performance for different applications over various network environment. When PBC is used as a strong authentication mechanism for end users, it saves 26%-36% of time than the approach based on ECDSA with a tamper-resistant hardware module. As for its application in federation, it could even save more time when the user proves its possession of key to a Relying Party.

View More Papers

A Practical Approach for Taking Down Avalanche Botnets Under...

Victor Le Pochat (imec-DistriNet, KU Leuven), Tim Van hamme (imec-DistriNet, KU Leuven), Sourena Maroofi (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Tom Van Goethem (imec-DistriNet, KU Leuven), Davy Preuveneers (imec-DistriNet, KU Leuven), Andrzej Duda (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Wouter Joosen (imec-DistriNet, KU Leuven), Maciej Korczyński (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG)

Read More

HFL: Hybrid Fuzzing on the Linux Kernel

Kyungtae Kim (Purdue University), Dae R. Jeong (KAIST), Chung Hwan Kim (NEC Labs America), Yeongjin Jang (Oregon State University), Insik Shin (KAIST), Byoungyoung Lee (Seoul National University)

Read More

CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples

Honggang Yu (University of Florida), Kaichen Yang (University of Florida), Teng Zhang (University of Central Florida), Yun-Yun Tsai (National Tsing Hua University), Tsung-Yi Ho (National Tsing Hua University), Yier Jin (University of Florida)

Read More

Finding Safety in Numbers with Secure Allegation Escrows

Venkat Arun (Massachusetts Institute of Technology), Aniket Kate (Purdue University), Deepak Garg (Max Planck Institute for Software Systems), Peter Druschel (Max Planck Institute for Software Systems), Bobby Bhattacharjee (University of Maryland)

Read More