Yuqi Qing (Tsinghua University), Qilei Yin (Zhongguancun Laboratory), Xinhao Deng (Tsinghua University), Yihao Chen (Tsinghua University), Zhuotao Liu (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Jia Zhang (Tsinghua University), Qi Li (Tsinghua University)

Machine learning (ML) is promising in accurately detecting malicious flows in encrypted network traffic; however, it is challenging to collect a training dataset that contains a sufficient amount of encrypted malicious data with correct labels. When ML models are trained with low-quality training data, they suffer degraded performance. In this paper, we aim at addressing a real-world low-quality training dataset problem, namely, detecting encrypted malicious traffic generated by continuously evolving malware. We develop RAPIER that fully utilizes different distributions of normal and malicious traffic data in the feature space, where normal data is tightly distributed in a certain area and the malicious data is scattered over the entire feature space to augment training data for model training. RAPIER includes two pre-processing modules to convert traffic into feature vectors and correct label noises. We evaluate our system on two public datasets and one combined dataset. With 1000 samples and 45% noises from each dataset, our system achieves the F1 scores of 0.770, 0.776, and 0.855, respectively, achieving average improvements of 352.6%, 284.3%, and 214.9% over the existing methods, respectively. Furthermore, We evaluate RAPIER with a real-world dataset obtained from a security enterprise. RAPIER effectively achieves encrypted malicious traffic detection with the best F1 score of 0.773 and improves the F1 score of existing methods by an average of 272.5%.

View More Papers

Faster and Better: Detecting Vulnerabilities in Linux-based IoT Firmware...

Zicong Gao (State Key Laboratory of Mathematical Engineering and Advanced Computing), Chao Zhang (Tsinghua University), Hangtian Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Wenhou Sun (Tsinghua University), Zhizhuo Tang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Liehui Jiang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianjun Chen (Tsinghua…

Read More

IRRedicator: Pruning IRR with RPKI-Valid BGP Insights

Minhyeok Kang (Seoul National University), Weitong Li (Virginia Tech), Roland van Rijswijk-Deij (University of Twente), Ted "Taekyoung" Kwon (Seoul National University), Taejoong Chung (Virginia Tech)

Read More

DorPatch: Distributed and Occlusion-Robust Adversarial Patch to Evade Certifiable...

Chaoxiang He (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Bin B. Zhu (Microsoft Research), Yimiao Zeng (Huazhong University of Science and Technology), Hanqing Hu (Huazhong University of Science and Technology), Xiaofan Bai (Huazhong University of Science and Technology), Hai Jin (Huazhong University of Science and Technology), Dongmei Zhang…

Read More

Transforming Raw Authentication Logs into Interpretable Events

Seth Hastings, Tyler Moore, Corey Bolger, Philip Schumway (University of Tulsa)

Read More