David Hunt (Duke University), Kristen Angell (Duke University), Zhenzhou Qi (Duke University), Tingjun Chen (Duke University), Miroslav Pajic (Duke University)

Frequency modulated continuous wave (FMCW) millimeter-wave (mmWave) radars play a critical role in many of the advanced driver assistance systems (ADAS) featured on today's vehicles. While previous works have demonstrated (only) successful false-positive spoofing attacks against these sensors, all but one assumed that an attacker had the runtime knowledge of the victim radar's configuration. In this work, we introduce MadRadar, a general black-box radar attack framework for automotive mmWave FMCW radars capable of estimating the victim radar's configuration in real-time, and then executing an attack based on the estimates. We evaluate the impact of such attacks maliciously manipulating a victim radar's point cloud, and show the novel ability to effectively `add' (i.e., false positive attacks), `remove' (i.e., false negative attacks), or `move' (i.e., translation attacks) object detections from a victim vehicle's scene. Finally, we experimentally demonstrate the feasibility of our attacks on real-world case studies performed using a real-time physical prototype on a software-defined radio platform.

View More Papers

Certificate Transparency Revisited: The Public Inspections on Third-party Monitors

Aozhuo Sun (Institute of Information Engineering, Chinese Academy of Sciences), Jingqiang Lin (School of Cyber Science and Technology, University of Science and Technology of China), Wei Wang (Institute of Information Engineering, Chinese Academy of Sciences), Zeyan Liu (The University of Kansas), Bingyu Li (School of Cyber Science and Technology, Beihang University), Shushang Wen (School of…

Read More

AVMON: Securing Autonomous Vehicles by Learning Control Invariants and...

Ahmed Abdo, Sakib Md Bin Malek, Xuanpeng Zhao, Nael Abu-Ghazaleh (University of California, Riverside)

Read More