Christoph Sendner (University of Würzburg), Jasper Stang (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Raveen Wijewickrama (University of Texas at San Antonio), Murtuza Jadliwala (University of Texas at San Antonio)

The Tor network is the most prominent system for providing anonymous communication to web users, with a daily user base of 2 million users. However, since its inception, it has been constantly targeted by various traffic fingerprinting and correlation attacks aiming at deanonymizing its users. A critical requirement for these attacks is to attract as much user traffic to adversarial relays as possible, which is typically accomplished by means of bandwidth inflation attacks. This paper proposes a new inflation attack vector in Tor, referred to as MirageFlow, which enables inflation of measured bandwidth. The underlying attack technique exploits resource sharing among Tor relay nodes and employs a cluster of attacker-controlled relays with coordinated resource allocation within the cluster to deceive bandwidth measurers into believing that each relay node in the cluster possesses ample resources. We propose two attack variants, C-MirageFlow and D-MirageFlow, and test both versions in a private Tor test network. Our evaluation demonstrates that an attacker can inflate the measured bandwidth by a factor close to n using C-MirageFlow and nearly half n*N using D-MirageFlow, where n is the size of the cluster hosted on one server and N is the number of servers. Furthermore, our theoretical analysis reveals that gaining control over half of the Tor network's traffic can be achieved by employing just 10 dedicated servers with a cluster size of 109 relays running the MirageFlow attack, each with a bandwidth of 100MB/s. The problem is further exacerbated by the fact that Tor not only allows resource sharing but, according to recent reports, even promotes it.

View More Papers

Investigating the Impact of Evasion Attacks Against Automotive Intrusion...

Paolo Cerracchio, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

Read More

Research on the Reliability and Fairness of Opinion Retrieval...

Zhuo Chen, Jiawei Liu, Haotan Liu (Wuhan University)

Read More

EyeSeeIdentity: Exploring Natural Gaze Behaviour for Implicit User Identification...

L Yasmeen Abdrabou (Lancaster University), Mariam Hassib (Fortiss Research Institute of the Free State of Bavaria), Shuqin Hu (LMU Munich), Ken Pfeuffer (Aarhus University), Mohamed Khamis (University of Glasgow), Andreas Bulling (University of Stuttgart), Florian Alt (University of the Bundeswehr Munich)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More