Christoph Sendner (University of Würzburg), Jasper Stang (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Raveen Wijewickrama (University of Texas at San Antonio), Murtuza Jadliwala (University of Texas at San Antonio)

The Tor network is the most prominent system for providing anonymous communication to web users, with a daily user base of 2 million users. However, since its inception, it has been constantly targeted by various traffic fingerprinting and correlation attacks aiming at deanonymizing its users. A critical requirement for these attacks is to attract as much user traffic to adversarial relays as possible, which is typically accomplished by means of bandwidth inflation attacks. This paper proposes a new inflation attack vector in Tor, referred to as MirageFlow, which enables inflation of measured bandwidth. The underlying attack technique exploits resource sharing among Tor relay nodes and employs a cluster of attacker-controlled relays with coordinated resource allocation within the cluster to deceive bandwidth measurers into believing that each relay node in the cluster possesses ample resources. We propose two attack variants, C-MirageFlow and D-MirageFlow, and test both versions in a private Tor test network. Our evaluation demonstrates that an attacker can inflate the measured bandwidth by a factor close to n using C-MirageFlow and nearly half n*N using D-MirageFlow, where n is the size of the cluster hosted on one server and N is the number of servers. Furthermore, our theoretical analysis reveals that gaining control over half of the Tor network's traffic can be achieved by employing just 10 dedicated servers with a cluster size of 109 relays running the MirageFlow attack, each with a bandwidth of 100MB/s. The problem is further exacerbated by the fact that Tor not only allows resource sharing but, according to recent reports, even promotes it.

View More Papers

WIP: A Trust Assessment Method for In-Vehicular Networks using...

Artur Hermann, Natasa Trkulja (Ulm University - Institute of Distributed Systems), Anderson Ramon Ferraz de Lucena, Alexander Kiening (DENSO AUTOMOTIVE Deutschland GmbH), Ana Petrovska (Huawei Technologies), Frank Kargl (Ulm University - Institute of Distributed Systems)

Read More

Benchmarking transferable adversarial attacks

Zhibo Jin (The University of Sydney), Jiayu Zhang (Suzhou Yierqi), Zhiyu Zhu, Huaming Chen (The University of Sydney)

Read More

LoRDMA: A New Low-Rate DoS Attack in RDMA Networks

Shicheng Wang (Tsinghua University), Menghao Zhang (Beihang University & Infrawaves), Yuying Du (Information Engineering University), Ziteng Chen (Southeast University), Zhiliang Wang (Tsinghua University & Zhongguancun Laboratory), Mingwei Xu (Tsinghua University & Zhongguancun Laboratory), Renjie Xie (Tsinghua University), Jiahai Yang (Tsinghua University & Zhongguancun Laboratory)

Read More

FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning Attacks...

Hossein Fereidooni (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More