Alexander Bulekov (Boston University), Bandan Das (Red Hat), Stefan Hajnoczi (Red Hat), Manuel Egele (Boston University)

The integrity of the entire computing ecosystem depends on the security of our operating systems (OSes). Unfortunately, due to the scale and complexity of OS code, hundreds of security issues are found in OSes, every year. As such, operating systems have constantly been prime use-cases for applying security-analysis tools. In recent years, fuzz-testing has appeared as the dominant technique for automatically finding security issues in software. As such, fuzzing has been adapted to find thousands of bugs in kernels. However, modern OS fuzzers, such as Syzkaller, rely on precise, extensive, manually created harnesses and grammars for each interface fuzzed within the kernel. Due to this reliance on grammars, current OS fuzzers are faced with scaling-issues.

In this paper, we present FuzzNG, our generic approach to fuzzing system-calls on OSes. Unlike Syzkaller, FuzzNG does not require intricate descriptions of system-call interfaces in order to function. Instead FuzzNG leverages fundamental Kernel design features in order to reshape and simplify the fuzzer’s input-space. As such FuzzNG only requires a small config, for each new target: essentially a list of files and system-call numbers the fuzzer should explore.

We implemented FuzzNG for the Linux kernel. Testing FuzzNG over 10 Linux components with extensive descrip tions in Syzkaller showed that, on average, FuzzNG achieves 102.5% of Syzkaller’s coverage. FuzzNG found 9 new bugs (5 in components that Syzkaller had already fuzzed extensively, for years). Additionally, FuzzNG’s lightweight configs are less than 1.7% the size of Syzkaller’s manually-written grammars. Crucially, FuzzNG achieves this without initial seed-inputs, or expert guidance.

View More Papers

Folk Models of Misinformation on Social Media

Filipo Sharevski (DePaul University), Amy Devine (DePaul University), Emma Pieroni (DePaul University), Peter Jachim (DePaul University)

Read More

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More

Anomaly Detection in the Open World: Normality Shift Detection,...

Dongqi Han (Tsinghua University), Zhiliang Wang (Tsinghua University), Wenqi Chen (Tsinghua University), Kai Wang (Tsinghua University), Rui Yu (Tsinghua University), Su Wang (Tsinghua University), Han Zhang (Tsinghua University), Zhihua Wang (State Grid Shanghai Municipal Electric Power Company), Minghui Jin (State Grid Shanghai Municipal Electric Power Company), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia…

Read More

Location Spoofing Attacks on Autonomous Fleets

Jinghan Yang, Andew Estornell, Yevgeniy Vorobeychik (Washington University in St. Louis)

Read More