Alexander Bulekov (Boston University), Bandan Das (Red Hat), Stefan Hajnoczi (Red Hat), Manuel Egele (Boston University)

The integrity of the entire computing ecosystem depends on the security of our operating systems (OSes). Unfortunately, due to the scale and complexity of OS code, hundreds of security issues are found in OSes, every year. As such, operating systems have constantly been prime use-cases for applying security-analysis tools. In recent years, fuzz-testing has appeared as the dominant technique for automatically finding security issues in software. As such, fuzzing has been adapted to find thousands of bugs in kernels. However, modern OS fuzzers, such as Syzkaller, rely on precise, extensive, manually created harnesses and grammars for each interface fuzzed within the kernel. Due to this reliance on grammars, current OS fuzzers are faced with scaling-issues.

In this paper, we present FuzzNG, our generic approach to fuzzing system-calls on OSes. Unlike Syzkaller, FuzzNG does not require intricate descriptions of system-call interfaces in order to function. Instead FuzzNG leverages fundamental Kernel design features in order to reshape and simplify the fuzzer’s input-space. As such FuzzNG only requires a small config, for each new target: essentially a list of files and system-call numbers the fuzzer should explore.

We implemented FuzzNG for the Linux kernel. Testing FuzzNG over 10 Linux components with extensive descrip tions in Syzkaller showed that, on average, FuzzNG achieves 102.5% of Syzkaller’s coverage. FuzzNG found 9 new bugs (5 in components that Syzkaller had already fuzzed extensively, for years). Additionally, FuzzNG’s lightweight configs are less than 1.7% the size of Syzkaller’s manually-written grammars. Crucially, FuzzNG achieves this without initial seed-inputs, or expert guidance.

View More Papers

“This is different from the Western world”: Understanding Password...

Aniqa Alam, Elizabeth Stobert, Robert Biddle (Carleton University)

Read More

Tactics, Threats & Targets: Modeling Disinformation and its Mitigation

Shujaat Mirza (New York University), Labeeba Begum (New York University Abu Dhabi), Liang Niu (New York University), Sarah Pardo (New York University Abu Dhabi), Azza Abouzied (New York University Abu Dhabi), Paolo Papotti (EURECOM), Christina Pöpper (New York University Abu Dhabi)

Read More

Non-Interactive Privacy-Preserving Sybil-Free Authentication Scheme in VANETs

Mahdi Akil (Karlstad University), Leonardo Martucci (Karlstad University), Jaap-Henk Hoepman (Radboud University)

Read More