Robert Dumitru (Ruhr University Bochum and The University of Adelaide), Thorben Moos (UCLouvain), Andrew Wabnitz (Defence Science and Technology Group), Yuval Yarom (Ruhr University Bochum)

In recent years a new class of side-channel attacks has emerged. Instead of targeting device emissions during dynamic computation, adversaries now frequently exploit the leakage or response behaviour of integrated circuits in a static state. Members of this class include Static Power Side-Channel Analysis (SCA), Laser Logic State Imaging (LLSI) and Impedance Analysis (IA). Despite relying on different physical phenomena, they all enable the extraction of sensitive information from circuits in a static state with high accuracy and low noise -- a trait that poses a significant threat to many established side-channel countermeasures.

In this work, we point out the shortcomings of existing solutions and derive a simple yet effective countermeasure. We observe that in order to realise their full potential, static side-channel attacks require the targeted data to remain unchanged for a certain amount of time. For some cryptographic secrets this happens naturally, for others it requires stopping the target circuit's clock. Our proposal, called Borrowed Time, hinders an attacker's ability to leverage such idle conditions, even if full control over the global clock signal is obtained. For that, by design, key-dependent data may only be present in unprotected temporary storage (e.g. flip-flops) when strictly needed. Borrowed Time then continuously monitors the target circuit and upon detecting an idle state, securely wipes sensitive contents.

We demonstrate the need for our countermeasure and its effectiveness by mounting practical static power SCA attacks against cryptographic systems on FPGAs, with and without Borrowed Time. In one case we attack a masked implementation and show that it is only protected with our countermeasure in place. Furthermore we demonstrate that secure on-demand wiping of sensitive data works as intended, affirming the theory that the technique also effectively hinders LLSI and IA.

View More Papers

RContainer: A Secure Container Architecture through Extending ARM CCA...

Qihang Zhou (Institute of Information Engineering, Chinese Academy of Sciences), Wenzhuo Cao (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences), Peng Liu (The Pennsylvania State University, USA), Shengzhi Zhang (Department of Computer Science, Metropolitan College,…

Read More

WIP: Towards Privacy Compliance by Design in the Matter...

Yichen Liu (Indiana University Bloomington), Jingwen Yan (Clemson University), Song Liao (Texas Tech University), Long Cheng (Clemson University), Luyi Xing (Indiana University Bloomington)

Read More

The Road to Trust: Building Enclaves within Confidential VMs

Wenhao Wang (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Linke Song (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Benshan Mei (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Shuang Liu (Ant Group), Shijun Zhao (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering,…

Read More

Privacy-Enhancing Technologies Against Physical-Layer and Link-Layer Device Tracking: Trends,...

Apolline Zehner (Universite libre de Bruxelles), Iness Ben Guirat (Universite libre de Bruxelles), Jan Tobias Muhlberg (Universite libre de Bruxelles)

Read More