Robert Dumitru (Ruhr University Bochum and The University of Adelaide), Thorben Moos (UCLouvain), Andrew Wabnitz (Defence Science and Technology Group), Yuval Yarom (Ruhr University Bochum)

In recent years a new class of side-channel attacks has emerged. Instead of targeting device emissions during dynamic computation, adversaries now frequently exploit the leakage or response behaviour of integrated circuits in a static state. Members of this class include Static Power Side-Channel Analysis (SCA), Laser Logic State Imaging (LLSI) and Impedance Analysis (IA). Despite relying on different physical phenomena, they all enable the extraction of sensitive information from circuits in a static state with high accuracy and low noise -- a trait that poses a significant threat to many established side-channel countermeasures.

In this work, we point out the shortcomings of existing solutions and derive a simple yet effective countermeasure. We observe that in order to realise their full potential, static side-channel attacks require the targeted data to remain unchanged for a certain amount of time. For some cryptographic secrets this happens naturally, for others it requires stopping the target circuit's clock. Our proposal, called Borrowed Time, hinders an attacker's ability to leverage such idle conditions, even if full control over the global clock signal is obtained. For that, by design, key-dependent data may only be present in unprotected temporary storage (e.g. flip-flops) when strictly needed. Borrowed Time then continuously monitors the target circuit and upon detecting an idle state, securely wipes sensitive contents.

We demonstrate the need for our countermeasure and its effectiveness by mounting practical static power SCA attacks against cryptographic systems on FPGAs, with and without Borrowed Time. In one case we attack a masked implementation and show that it is only protected with our countermeasure in place. Furthermore we demonstrate that secure on-demand wiping of sensitive data works as intended, affirming the theory that the technique also effectively hinders LLSI and IA.

View More Papers

dAngr: Lifting Software Debugging to a Symbolic Level

Dairo de Ruck, Jef Jacobs, Jorn Lapon, Vincent Naessens (DistriNet, KU Leuven, 3001 Leuven, Belgium)

Read More

SongBsAb: A Dual Prevention Approach against Singing Voice Conversion...

Guangke Chen (Pengcheng Laboratory), Yedi Zhang (National University of Singapore), Fu Song (Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Science; Nanjing Institute of Software Technology), Ting Wang (Stony Brook University), Xiaoning Du (Monash University), Yang Liu (Nanyang Technological University)

Read More

Mnemocrypt

André Pacteau, Antonino Vitale, Davide Balzarotti, Simone Aonzo (EURECOM)

Read More

CASPR: Context-Aware Security Policy Recommendation

Lifang Xiao (Institute of Information Engineering, Chinese Academy of Sciences), Hanyu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Aimin Yu (Institute of Information Engineering, Chinese Academy of Sciences), Lixin Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Dan Meng (Institute of Information Engineering, Chinese Academy of Sciences)

Read More