Piyush Kumar Sharma (imec-COSIC, KU Leuven), Devashish Gosain (Max Planck Institute for Informatics), Claudia Diaz (Nym Technologies, SA and imec-COSIC, KU Leuven)

Cryptocurrency systems can be subject to deanonymization attacks by exploiting the network-level communication on their peer-to-peer network. Adversaries who control a set of colluding node(s) within the peer-to-peer network can observe transactions being exchanged and infer the parties involved. Thus, various network anonymity schemes have been proposed to mitigate this problem, with some solutions providing theoretical anonymity guarantees.

In this work, we model such peer-to-peer network anonymity solutions and evaluate their anonymity guarantees. To do so, we propose a novel framework that uses Bayesian inference to obtain the probability distributions linking transactions to their possible originators. We characterize transaction anonymity with those distributions, using entropy as metric of adversarial uncertainty on the originator's identity. In particular, we model Dandelion, Dandelion++, and Lightning Network. We study different configurations and demonstrate that none of them offers acceptable anonymity to their users. For instance, our analysis reveals that in the widely deployed Lightning Network, with $1%$ strategically chosen colluding nodes the adversary can uniquely determine the originator for $approx50%$ of the total transactions in the network. In Dandelion, an adversary that controls $15%$ of the nodes has on average uncertainty among only $8$ possible originators. Moreover, we observe that due to the way Dandelion and Dandelion++ are designed, increasing the network size does not correspond to an increase in the anonymity set of potential originators. Alarmingly, our longitudinal analysis of Lightning Network reveals rather an inverse trend---with the growth of the network the overall anonymity decreases.

View More Papers

RAI2: Responsible Identity Audit Governing the Artificial Intelligence

Tian Dong (Shanghai Jiao Tong University), Shaofeng Li (Shanghai Jiao Tong University), Guoxing Chen (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Haojin Zhu (Shanghai Jiao Tong University), Zhen Liu (Shanghai Jiao Tong University)

Read More

Do Not Give a Dog Bread Every Time He...

Chongqing Lei (Southeast University), Zhen Ling (Southeast University), Yue Zhang (Jinan University), Kai Dong (Southeast University), Kaizheng Liu (Southeast University), Junzhou Luo (Southeast University), Xinwen Fu (University of Massachusetts Lowell)

Read More

WIP: AMICA: Attention-based Multi-Identifier model for asynchronous intrusion detection...

Natasha Alkhatib (Télécom Paris), Lina Achaji (INRIA), Maria Mushtaq (Télécom Paris), Hadi Ghauch (Télécom Paris), Jean-Luc Danger (Télécom Paris)

Read More

“I didn't click”: What users say when reporting phishing

Nikolas Pilavakis, Adam Jenkins, Nadin Kokciyan, Kami Vaniea (University of Edinburgh)

Read More