Yan Pang (University of Virginia), Wenlong Meng (University of Virginia), Xiaojing Liao (Indiana University Bloomington), Tianhao Wang (University of Virginia)

With the rapid development of large language models, the potential threat of their malicious use, particularly in generating phishing content, is becoming increasingly prevalent. Leveraging the capabilities of LLMs, malicious users can synthesize phishing emails that are free from spelling mistakes and other easily detectable features. Furthermore, such models can generate topic-specific phishing messages, tailoring content to the target domain and increasing the likelihood of success.

Detecting such content remains a significant challenge, as LLM-generated phishing emails often lack clear or distinguishable linguistic features. As a result, most existing semantic-level detection approaches struggle to identify them reliably. While certain LLM-based detection methods have shown promise, they suffer from high computational costs and are constrained by the performance of the underlying language model, making them impractical for large-scale deployment.

In this work, we aim to address this issue. We propose Paladin, which embeds trigger-tag associations into vanilla LLM using various insertion strategies, creating them into instrumented LLMs. When an instrumented LLM generates content related to phishing, it will automatically include detectable tags, enabling easier identification. Based on the design on implicit and explicit triggers and tags, we consider four distinct scenarios in our work. We evaluate our method from three key perspectives: stealthiness, effectiveness, and robustness, and compare it with existing baseline methods. Experimental results show that our method outperforms the baselines, achieving over 90% detection accuracy across all scenarios.

View More Papers

Memory Band-Aid: A Principled Rowhammer Defense-in-Depth

Carina Fiedler (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Sudheendra Raghav Neela (Graz University of Technology), Martin Heckel (Hof University of Applied Sciences), Hannes Weissteiner (Graz University of Technology), Abdullah Giray Yağlıkçı (ETH Zürich), Florian Adamsky (Hof University of Applied Sciences), Daniel Gruss (Graz University of Technology)

Read More

Discovering Blind-Trust Vulnerabilities in PLC Binaries via State Machine...

Fangzhou Dong (Arizona State University), Arvind S Raj (Arizona State University), Efrén López-Morales (New Mexico State University), Siyu Liu (Arizona State University), Yan Shoshitaishvili (Arizona State University), Tiffany Bao (Arizona State University), Adam Doupé (Arizona State University), Muslum Ozgur Ozmen (Arizona State University), Ruoyu Wang (Arizona State University)

Read More

Beyond RTT: An Adversarially Robust Two-Tiered Approach For Residential...

Temoor Ali (Qatar Computing Research Institute), Shehel Yoosuf (Hamad Bin Khalifa University), Mouna Rabhi (Qatar Computing Research Institute), Mashael Al-Sabah (Qatar Computing Research Institute), Hao Yun (Qatar Computing Research Institute)

Read More