Haotian Chi (Temple University), Qiang Zeng (University of South Carolina), Xiaojiang Du (Temple University), Lannan Luo (University of South Carolina)

Internet of Things (IoT) platforms enable users to deploy home automation applications. Meanwhile, privacy issues arise as large amounts of sensitive device data flow out to IoT platforms. Most of the data flowing out to a platform actually do not trigger automation actions, while homeowners currently have no control once devices are bound to the platform. We present PFirewall, a customizable data-flow control system to enhance the privacy of IoT platform users. PFirewall automatically generates data-minimization policies, which only disclose minimum amount of data to fulfill automation. In addition, PFirewall provides interfaces for homeowners to customize individual privacy preferences by defining user-specified policies. To enforce these policies, PFirewall transparently intervenes and mediates the communication between IoT devices and the platform, without modifying the platform, IoT devices, or hub. Evaluation results on four real-world testbeds show that PFirewall reduces IoT data sent to the platform by 97% without impairing home automation, and effectively mitigates user-activity inference/tracking attacks and other privacy risks.

View More Papers

XDA: Accurate, Robust Disassembly with Transfer Learning

Kexin Pei (Columbia University), Jonas Guan (University of Toronto), David Williams-King (Columbia University), Junfeng Yang (Columbia University), Suman Jana (Columbia University)

Read More

(Short) Fooling Perception via Location: A Case of Region-of-Interest...

Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

Read More

Raising Trust in the Food Supply Chain

Alexander Krumpholz, Marthie Grobler, Raj Gaire, Claire Mason, Shanae Burns (CSIRO Data61)

Read More

Emilia: Catching Iago in Legacy Code

Rongzhen Cui (University of Toronto), Lianying Zhao (Carleton University), David Lie (University of Toronto)

Read More