Andrick Adhikari (University of Denver), Sanchari Das (University of Denver), Rinku Dewri (University of Denver)

The effectiveness of natural language privacy policies continues to be clouded by concerns surrounding their readability, ambiguity, and accessibility. Despite multiple design alternatives proposed over the years, natural language policies are still the primary format for organizations to communicate privacy practices to users. Current NLP techniques are often drawn towards generating high-level overviews, or specialized towards a single aspect of consumer privacy communication; the flexibility to apply them for multiple tasks is missing. To this aid, we present PolicyPulse, an information extraction pipeline designed to process privacy policies into usable formats. PolicyPulse employs a specialized XLNet classifier, and leverages a BERT-based model for semantic role labeling to extract phrases from policy sentences, while maintaining the semantic relations between predicates and their arguments. Our classification model was trained on 13,946 manually annotated semantic frames, and achieves a F1-score of 0.97 on identifying privacy practices communicated using clauses within a sentence. We emphasize the versatility of PolicyPulse through prototype applications to support requirement-driven policy presentations, question-answering systems, and privacy preference checking.

View More Papers

Automated Expansion of Privacy Data Taxonomy for Compliant Data...

Yue Qin (Indiana University Bloomington & Central University of Finance and Economics), Yue Xiao (Indiana University Bloomington & IBM Research), Xiaojing Liao (Indiana University Bloomington)

Read More

Scale-MIA: A Scalable Model Inversion Attack against Secure Federated...

Shanghao Shi (Virginia Tech), Ning Wang (University of South Florida), Yang Xiao (University of Kentucky), Chaoyu Zhang (Virginia Tech), Yi Shi (Virginia Tech), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

BARBIE: Robust Backdoor Detection Based on Latent Separability

Hanlei Zhang (Zhejiang University), Yijie Bai (Zhejiang University), Yanjiao Chen (Zhejiang University), Zhongming Ma (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

Beyond Classification: Inferring Function Names in Stripped Binaries via...

Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More