Daniel J. Bernstein (University of Illinois at Chicago and Academia Sinica), Tanja Lange (Eindhoven University of Technology amd Academia Sinica), Jonathan Levin (Academia Sinica and Eindhoven University of Technology), Bo-Yin Yang (Academia Sinica)

This paper introduces PQConnect, a post-quantum end-to-end tunneling protocol that automatically protects all packets between clients that have installed PQConnect and servers that have installed and configured PQConnect.

Like VPNs, PQConnect does not require any changes to higher-level protocols and application software. PQConnect adds cryptographic protection to unencrypted applications, works in concert with existing pre-quantum applications to add post-quantum protection, and adds a second application-independent layer of defense to any applications that have begun to incorporate application-specific post-quantum protection.

Unlike VPNs, PQConnect automatically creates end-to-end tunnels to any number of servers using automatic peer discovery, with no need for the client administrator to configure per-server information. Each server carries out a client-independent configuration step to publish an announcement that the server's name accepts PQConnect connections. Any PQConnect client connecting to that name efficiently finds this announcement, automatically establishes a post-quantum point-to-point IP tunnel to the server, and routes traffic for that name through that tunnel.

The foundation of security in PQConnect is the server's long-term public key used to encrypt and authenticate all PQConnect packets. PQConnect makes a conservative choice of post-quantum KEM for this public key. PQConnect also uses a smaller post-quantum KEM for forward secrecy, and elliptic curves to ensure pre-quantum security even in case of security failures in KEM design or KEM software. Security of the handshake component of PQConnect has been symbolically proven using Tamarin.

View More Papers

Careful About What App Promotion Ads Recommend! Detecting and...

Shang Ma (University of Notre Dame), Chaoran Chen (University of Notre Dame), Shao Yang (Case Western Reserve University), Shifu Hou (University of Notre Dame), Toby Jia-Jun Li (University of Notre Dame), Xusheng Xiao (Arizona State University), Tao Xie (Peking University), Yanfang Ye (University of Notre Dame)

Read More

LAMP: Lightweight Approaches for Latency Minimization in Mixnets with...

Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (University of Michigan), Claudia Diaz (KU Leuven)

Read More

CASPR: Context-Aware Security Policy Recommendation

Lifang Xiao (Institute of Information Engineering, Chinese Academy of Sciences), Hanyu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Aimin Yu (Institute of Information Engineering, Chinese Academy of Sciences), Lixin Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Dan Meng (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

Enhancing Security in Third-Party Library Reuse – Comprehensive Detection...

Shangzhi Xu (The University of New South Wales), Jialiang Dong (The University of New South Wales), Weiting Cai (Delft University of Technology), Juanru Li (Feiyu Tech), Arash Shaghaghi (The University of New South Wales), Nan Sun (The University of New South Wales), Siqi Ma (The University of New South Wales)

Read More