Pietro Borrello (Sapienza University of Rome), Andrea Fioraldi (EURECOM), Daniele Cono D'Elia (Sapienza University of Rome), Davide Balzarotti (Eurecom), Leonardo Querzoni (Sapienza University of Rome), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Coverage-guided fuzzers expose bugs by progressively mutating testcases to drive execution to new program locations. Code coverage is currently the most effective and popular exploration feedback. For several bugs, though, also how execution reaches a buggy program location may matter: for those, only tracking what code a testcase exercises may lead fuzzers to overlook interesting program states. Unfortunately, context-sensitive coverage tracking comes with an inherent state explosion problem. Existing attempts to implement context-sensitive coverage-guided fuzzers struggle with it, experiencing non-trivial issues for precision (due to coverage collisions) and performance (due to context tracking and queue/map explosion).

In this paper, we show that a much more effective approach to context-sensitive fuzzing is possible. First, we propose function cloning as a backward-compatible instrumentation primitive to enable precise (i.e., collision-free) context-sensitive coverage tracking. Then, to tame the state explosion problem, we argue to account for contextual information only when a fuzzer explores contexts selected as promising. We propose a prediction scheme to identify one pool of such contexts: we analyze the data-flow diversity of the incoming argument values at call sites, exposing to the fuzzer a contextually refined clone of the callee if the latter sees incoming abstract objects that its uses at other sites do not.

Our work shows that, by applying function cloning to program regions that we predict to benefit from context-sensitivity, we can overcome the aforementioned issues while preserving, and even improving, fuzzing effectiveness. On the FuzzBench suite, our approach largely outperforms state-of-the-art coverage-guided fuzzing embodiments, unveiling more and different bugs without incurring explosion or other apparent inefficiencies. On these heavily tested subjects, we also found 8 enduring security issues in 5 of them, with 6 CVE identifiers issued.

View More Papers

Like, Comment, Get Scammed: Characterizing Comment Scams on Media...

Xigao Li (Stony Brook University), Amir Rahmati (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

K-LEAK: Towards Automating the Generation of Multi-Step Infoleak Exploits...

Zhengchuan Liang (UC Riverside), Xiaochen Zou (UC Riverside), Chengyu Song (UC Riverside), Zhiyun Qian (UC Riverside)

Read More

File Hijacking Vulnerability: The Elephant in the Room

Chendong Yu (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Yang Xiao (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Jie Lu (Institute of Computing Technology of the Chinese Academy of Sciences), Yuekang…

Read More

Understanding the Internet-Wide Vulnerability Landscape for ROS-based Robotic Vehicles...

Wentao Chen, Sam Der, Yunpeng Luo, Fayzah Alshammari, Qi Alfred Chen (University of California, Irvine)

Read More