Pietro Borrello (Sapienza University of Rome), Andrea Fioraldi (EURECOM), Daniele Cono D'Elia (Sapienza University of Rome), Davide Balzarotti (Eurecom), Leonardo Querzoni (Sapienza University of Rome), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Coverage-guided fuzzers expose bugs by progressively mutating testcases to drive execution to new program locations. Code coverage is currently the most effective and popular exploration feedback. For several bugs, though, also how execution reaches a buggy program location may matter: for those, only tracking what code a testcase exercises may lead fuzzers to overlook interesting program states. Unfortunately, context-sensitive coverage tracking comes with an inherent state explosion problem. Existing attempts to implement context-sensitive coverage-guided fuzzers struggle with it, experiencing non-trivial issues for precision (due to coverage collisions) and performance (due to context tracking and queue/map explosion).

In this paper, we show that a much more effective approach to context-sensitive fuzzing is possible. First, we propose function cloning as a backward-compatible instrumentation primitive to enable precise (i.e., collision-free) context-sensitive coverage tracking. Then, to tame the state explosion problem, we argue to account for contextual information only when a fuzzer explores contexts selected as promising. We propose a prediction scheme to identify one pool of such contexts: we analyze the data-flow diversity of the incoming argument values at call sites, exposing to the fuzzer a contextually refined clone of the callee if the latter sees incoming abstract objects that its uses at other sites do not.

Our work shows that, by applying function cloning to program regions that we predict to benefit from context-sensitivity, we can overcome the aforementioned issues while preserving, and even improving, fuzzing effectiveness. On the FuzzBench suite, our approach largely outperforms state-of-the-art coverage-guided fuzzing embodiments, unveiling more and different bugs without incurring explosion or other apparent inefficiencies. On these heavily tested subjects, we also found 8 enduring security issues in 5 of them, with 6 CVE identifiers issued.

View More Papers

Transpose Attack: Stealing Datasets with Bidirectional Training

Guy Amit (Ben-Gurion University), Moshe Levy (Ben-Gurion University), Yisroel Mirsky (Ben-Gurion University)

Read More

DynPRE: Protocol Reverse Engineering via Dynamic Inference

Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Read More

Why People Still Fall for Phishing Emails: An Empirical...

Asangi Jayatilaka (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide, School of Computing Technologies, RMIT University), Nalin Asanka Gamagedara Arachchilage (School of Computer Science, The University of Auckland), M. Ali Babar (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide)

Read More

Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic...

Takami Sato (University of California Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More