Syed Rafiul Hussain (Purdue University), Mitziu Echeverria (University of Iowa), Omar Chowdhury (University of Iowa), Ninghui Li (Purdue University), Elisa Bertino (Purdue University)

The cellular paging (broadcast) protocol strives to
the balance between a cellular device's energy consumption and quality-of-service by allowing the device to *only* periodically poll for pending services in its idle, low-power state. For a given cellular device and serving network, the exact time periods when the device polls for services (called the *paging occasion*) are
fixed by design in the 4G/5G cellular protocol. In this paper, we show that the fixed nature of paging occasions can be exploited by an adversary in the vicinity of a victim to associate the victim's soft-identity (e.g., phone number, Twitter handle) with its paging occasion, with only a modest cost, through an attack dubbed $mathsf{ToRPEDO}$. Consequently, $mathsf{ToRPEDO}$ can enable an adversary to verify a victim's coarse-grained location information, inject fabricated paging messages, and mount denial-of-service attacks. We also demonstrate that, in 4G and 5G, it is plausible for an adversary to retrieve a victim device's persistent identity (i.e., IMSI) with a brute-force $mathsf{IMSI-Cracking}$ attack while using $mathsf{ToRPEDO}$ as an attack sub-step. Our further investigation on 4G paging protocol deployments also identified an *implementation oversight* of several network providers which enables the adversary to launch an attack, named $mathsf{PIERCER}$, for associating a victim's phone number with its IMSI; subsequently allowing targeted user location tracking. All of our attacks have been validated and evaluated in the wild using commodity hardware and software. We finally discuss potential countermeasures against the presented attacks.

View More Papers

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More

Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints

Shiqi Shen (National University of Singapore), Shweta Shinde (National University of Singapore), Soundarya Ramesh (National University of Singapore), Abhik Roychoudhury (National University of Singapore), Prateek Saxena (National University of Singapore)

Read More

Nearby Threats: Reversing, Analyzing, and Attacking Google’s ‘Nearby Connections’...

Daniele Antonioli (Singapore University of Technology and Design (SUTD)), Nils Ole Tippenhauer (CISPA), Kasper Rasmussen (University of Oxford)

Read More

Robust Performance Metrics for Authentication Systems

Shridatt Sugrim (Rutgers University), Can Liu (Rutgers University), Meghan McLean (Rutgers University), Janne Lindqvist (Rutgers University)

Read More