Hussein Darir (University of Illinois Urbana-Champaign), Geir Dullerud (University of Illinois Urbana-Champaign), Nikita Borisov (University of Illinois Urbana-Champaign)

We present ProbFlow, a probabilistic programming approach for estimating relay capacities in the Tor network. We refine previously derived probabilistic model of the network to take into account more of the complexity of the real-world Tor network. We use this model to perform inference in a probabilistic programming language called NumPyro which allows us to overcome the analytical barrier present in purely analytical approach. We integrate the implementation of ProbFlow to the current implementation of capacity estimation algorithms in the Tor network. We demonstrate the practical benefits of ProbFlow by simulating it in flow-based Python simulator and packet-based Shadow simulations, the highest fidelity simulator available for the Tor network. In both simulators, ProbFlow provides significantly more accurate estimates that results in improved user performance, with average download speeds increasing by 25% in the Shadow simulations.

View More Papers

Adversarial Robustness for Tabular Data through Cost and Utility...

Klim Kireev (EPFL), Bogdan Kulynych (EPFL), Carmela Troncoso (EPFL)

Read More

The Vulnerabilities Less Exploited: Cyberattacks on End-of-Life Satellites

Frank Lee and Gregory Falco (Johns Hopkins University) Presenter: Frank Lee

Read More

Detecting Unknown Encrypted Malicious Traffic in Real Time via...

Chuanpu Fu (Tsinghua University), Qi Li (Tsinghua University), Ke Xu (Tsinghua University)

Read More

Preventing SIM Box Fraud Using Device Model Fingerprinting

BeomSeok Oh (KAIST), Junho Ahn (KAIST), Sangwook Bae (KAIST), Mincheol Son (KAIST), Yonghwa Lee (KAIST), Min Suk Kang (KAIST), Yongdae Kim (KAIST)

Read More