Hussein Darir (University of Illinois Urbana-Champaign), Geir Dullerud (University of Illinois Urbana-Champaign), Nikita Borisov (University of Illinois Urbana-Champaign)

We present ProbFlow, a probabilistic programming approach for estimating relay capacities in the Tor network. We refine previously derived probabilistic model of the network to take into account more of the complexity of the real-world Tor network. We use this model to perform inference in a probabilistic programming language called NumPyro which allows us to overcome the analytical barrier present in purely analytical approach. We integrate the implementation of ProbFlow to the
current implementation of capacity estimation algorithms in the Tor network. We demonstrate the practical benefits of ProbFlow by simulating it in flow-based Python simulator and packet-based Shadow simulations, the highest fidelity simulator available for the Tor network. In both simulators, ProbFlow provides significantly more accurate estimates that results in improved user performance, with average download speeds increasing by 25% in the Shadow simulations.

View More Papers

Enhanced Vehicular Roll-Jam Attack using a Known Noise Source

Zachary Depp, Halit Bugra Tulay, C. Emre Koksal (The Ohio State University)

Read More

Let Me Unwind That For You: Exceptions to Backward-Edge...

Victor Duta (Vrije Universiteit Amsterdam), Fabian Freyer (University of California San Diego), Fabio Pagani (University of California, Santa Barbara), Marius...

Read More

Semi-Automated Synthesis of Driving Rules

Diego Ortiz, Leilani Gilpin, Alvaro A. Cardenas (University of California, Santa Cruz)

Read More

InfoMasker: Preventing Eavesdropping Using Phoneme-Based Noise

Peng Huang (Zhejiang University), Yao Wei (Zhejiang University), Peng Cheng (Zhejiang University), Zhongjie Ba (Zhejiang University), Li Lu (Zhejiang University),...

Read More