Hussein Darir (University of Illinois Urbana-Champaign), Geir Dullerud (University of Illinois Urbana-Champaign), Nikita Borisov (University of Illinois Urbana-Champaign)

We present ProbFlow, a probabilistic programming approach for estimating relay capacities in the Tor network. We refine previously derived probabilistic model of the network to take into account more of the complexity of the real-world Tor network. We use this model to perform inference in a probabilistic programming language called NumPyro which allows us to overcome the analytical barrier present in purely analytical approach. We integrate the implementation of ProbFlow to the
current implementation of capacity estimation algorithms in the Tor network. We demonstrate the practical benefits of ProbFlow by simulating it in flow-based Python simulator and packet-based Shadow simulations, the highest fidelity simulator available for the Tor network. In both simulators, ProbFlow provides significantly more accurate estimates that results in improved user performance, with average download speeds increasing by 25% in the Shadow simulations.

View More Papers

SynthDB: Synthesizing Database via Program Analysis for Security Testing...

An Chen (University of Georgia), Jiho Lee (University of Virginia), Basanta Chaulagain (University of Georgia), Yonghwi Kwon (University of Virginia), Kyu Hyung Lee (University of Georgia)

Read More

Blaze: A Framework for Interprocedural Binary Analysis

Matthew Revelle, Matt Parker, Kevin Orr (Kudu Dynamics)

Read More

RCABench: Open Benchmarking Platform for Root Cause Analysis

Keisuke Nishimura, Yuichi Sugiyama, Yuki Koike, Masaya Motoda, Tomoya Kitagawa, Toshiki Takatera, Yuma Kurogome (Ricerca Security, Inc.)

Read More