Jens Müller (Ruhr University Bochum), Dominik Noss (Ruhr University Bochum), Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Jörg Schwenk (Ruhr University Bochum)

PDF is the de-facto standard for document exchange. It is common to open PDF files from potentially untrusted sources such as email attachments or downloaded from the Internet. In this work, we perform an in-depth analysis of the capabilities of malicious PDF documents. Instead of focusing on implementation bugs, we abuse legitimate features of the PDF standard itself by systematically identifying dangerous paths in the PDF file structure. These dangerous paths lead to attacks that we categorize into four generic classes: (1) Denial-of-Service attacks affecting the host that processes the document. (2) Information disclosure attacks leaking personal data out of the victim’s computer. (3) Data manipulation on the victim’s system. (4) Code execution on the victim’s machine. An evaluation of 28 popular PDF processing applications shows that 26 of them are vulnerable at least one attack. Finally, we propose a methodology to protect against attacks based on PDF features systematically.

View More Papers

QPEP: An Actionable Approach to Secure and Performant Broadband...

James Pavur (Oxford University), Martin Strohmeier (armasuisse), Vincent Lenders (armasuisse), Ivan Martinovic (Oxford University)

Read More

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China), Ting Li (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Guofei Gu (Texas A&M University), Yufei Zhang (University of Electronic Science and Technology of China), Zhou Liao (University…

Read More

Securing CAN Traffic on J1939 Networks

Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Read More

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More