Jens Müller (Ruhr University Bochum), Dominik Noss (Ruhr University Bochum), Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Jörg Schwenk (Ruhr University Bochum)

PDF is the de-facto standard for document exchange. It is common to open PDF files from potentially untrusted sources such as email attachments or downloaded from the Internet. In this work, we perform an in-depth analysis of the capabilities of malicious PDF documents. Instead of focusing on implementation bugs, we abuse legitimate features of the PDF standard itself by systematically identifying dangerous paths in the PDF file structure. These dangerous paths lead to attacks that we categorize into four generic classes: (1) Denial-of-Service attacks affecting the host that processes the document. (2) Information disclosure attacks leaking personal data out of the victim’s computer. (3) Data manipulation on the victim’s system. (4) Code execution on the victim’s machine. An evaluation of 28 popular PDF processing applications shows that 26 of them are vulnerable at least one attack. Finally, we propose a methodology to protect against attacks based on PDF features systematically.

View More Papers

DNS Privacy Vs : Confronting protocol design trade offs...

Mallory Knodel (Center for Democracy and Technology), Shivan Sahib (Salesforce)

Read More

Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses...

Virat Shejwalkar (UMass Amherst), Amir Houmansadr (UMass Amherst)

Read More

QPEP: An Actionable Approach to Secure and Performant Broadband...

James Pavur (Oxford University), Martin Strohmeier (armasuisse), Vincent Lenders (armasuisse), Ivan Martinovic (Oxford University)

Read More

Доверя́й, но проверя́й: SFI safety for native-compiled Wasm

Evan Johnson (University of California San Diego), David Thien (University of California San Diego), Yousef Alhessi (University of California San Diego), Shravan Narayan (University Of California San Diego), Fraser Brown (Stanford University), Sorin Lerner (University of California San Diego), Tyler McMullen (Fastly Labs), Stefan Savage (University of California San Diego), Deian Stefan (University of California…

Read More