Amrita Roy Chowdhury (University of Michigan, Ann Arbor), David Glukhov (University of Toronto), Divyam Anshumaan (University of Wisconsin), Prasad Chalasani (Langroid), Nicholas Papernot (University of Toronto), Somesh Jha (University of Wisconsin), Mihir Bellare (UCSD)

The rise of large language models (LLMs) has introduced new privacy challenges, particularly during textit{inference} where sensitive information in prompts may be exposed to proprietary LLM APIs. In this paper, we address the problem of formally protecting the sensitive information contained in a prompt while maintaining response quality. To this end, first, we introduce a cryptographically inspired notion of a textit{prompt sanitizer} which transforms an input prompt to protect its sensitive tokens. Second, we propose Pr$epsilonepsilon$mpt, a novel system that implements a prompt sanitizer, focusing on the sensitive information that can be derived solely from the individual tokens. Pr$epsilonepsilon$mpt categorizes sensitive tokens into two types: (1) those where the LLM's response depends solely on the format (such as SSNs, credit card numbers), for which we use format-preserving encryption (FPE); and (2) those where the response depends on specific values, (such as age, salary) for which we apply metric differential privacy (mDP). Our evaluation demonstrates that Pr$epsilonepsilon$mpt is a practical method to achieve meaningful privacy guarantees, while maintaining high utility compared to unsanitized prompts, and outperforming prior methods.

View More Papers

From Perception to Protection: A Developer-Centered Study of Security...

Kunlin Cai (University of California, Los Angeles), Jinghuai Zhang (University of California, Los Angeles), Ying Li (University of California, Los Angeles), Zhiyuan Wang (University of Virginia), Xun Chen (Independent Researcher), Tianshi Li (Northeastern University), Yuan Tian (University of California, Los Angeles)

Read More

Ipotane: Balancing the Good and Bad Cases of Asynchronous...

Xiaohai Dai (Huazhong University of Science and Technology), Chaozheng Ding (Huazhong University of Science and Technology), Hai Jin (Huazhong University of Science and Technology), Julian Loss (CISPA Helmholtz Center for Information Security), Ling Ren (University of Illinois at Urbana-Champaign)

Read More

Memory Backdoor Attacks on Neural Networks

Eden Luzon (Ben Gurion University of the Negev), Guy Amit (Ben-Gurion University & IBM Research), Roy Weiss (Ben Gurion University of the Negev), Torsten Krauß (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Yisroel Mirsky (Ben Gurion University of the Negev)

Read More