Yaniv David (Columbia University), Neophytos Christou (Brown University), Andreas D. Kellas (Columbia University), Vasileios P. Kemerlis (Brown University), Junfeng Yang (Columbia University)

Managed languages facilitate convenient ways for serializing objects, allowing applications to persist and transfer them easily, yet this feature opens them up to attacks. By manipulating serialized objects, attackers can trigger a chained execution of existing code segments, using them as gadgets to form an exploit. Protecting deserialization calls against attacks is cumbersome and tedious, leading to many developers avoiding deploying defenses properly. We present QUACK, a framework for automatically protecting applications by fixing calls to deserialization APIs. This “binding” limits the classes allowed for usage in the deserialization process, severely limiting the code available for (ab)use as part of exploits. QUACK computes the set of classes that should be allowed using a novel static duck typing inference technique. In particular, it statically collects all statements in the program code that manipulate objects after they are deserialized, and puts together a filter for the list of classes that should be available at runtime. We have implemented QUACK for PHP and evaluated it on a set of applications with known CVEs, and popular applications crawled from GitHub. QUACK managed to fix the applications in a way that prevented any attempt at automatically generating an exploit against them, by blocking, on average, 97% of the application’s code that could be used as gadgets. We submitted a sample of three fixes generated by QUACK as pull requests, and their developers merged them.

View More Papers

ShapFuzz: Efficient Fuzzing via Shapley-Guided Byte Selection

Kunpeng Zhang (Shenzhen International Graduate School, Tsinghua University), Xiaogang Zhu (Swinburne University of Technology), Xi Xiao (Shenzhen International Graduate School, Tsinghua University), Minhui Xue (CSIRO's Data61), Chao Zhang (Tsinghua University), Sheng Wen (Swinburne University of Technology)

Read More

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

The Impact of Workload on Phishing Susceptibility: An Experiment

Sijie Zhuo (University of Auckland), Robert Biddle (University of Auckland and Carleton University, Ottawa), Lucas Betts, Nalin Asanka Gamagedara Arachchilage, Yun Sing Koh, Danielle Lottridge, Giovanni Russello (University of Auckland)

Read More

Detecting Voice Cloning Attacks via Timbre Watermarking

Chang Liu (University of Science and Technology of China), Jie Zhang (Nanyang Technological University), Tianwei Zhang (Nanyang Technological University), Xi Yang (University of Science and Technology of China), Weiming Zhang (University of Science and Technology of China), NengHai Yu (University of Science and Technology of China)

Read More