Yaniv David (Columbia University), Neophytos Christou (Brown University), Andreas D. Kellas (Columbia University), Vasileios P. Kemerlis (Brown University), Junfeng Yang (Columbia University)

Managed languages facilitate convenient ways for serializing objects, allowing applications to persist and transfer them easily, yet this feature opens them up to attacks. By manipulating serialized objects, attackers can trigger a chained execution of existing code segments, using them as gadgets to form an exploit. Protecting deserialization calls against attacks is cumbersome and tedious, leading to many developers avoiding deploying defenses properly. We present QUACK, a framework for automatically protecting applications by fixing calls to deserialization APIs. This “binding” limits the classes allowed for usage in the deserialization process, severely limiting the code available for (ab)use as part of exploits. QUACK computes the set of classes that should be allowed using a novel static duck typing inference technique. In particular, it statically collects all statements in the program code that manipulate objects after they are deserialized, and puts together a filter for the list of classes that should be available at runtime. We have implemented QUACK for PHP and evaluated it on a set of applications with known CVEs, and popular applications crawled from GitHub. QUACK managed to fix the applications in a way that prevented any attempt at automatically generating an exploit against them, by blocking, on average, 97% of the application’s code that could be used as gadgets. We submitted a sample of three fixes generated by QUACK as pull requests, and their developers merged them.

View More Papers

WIP: Towards Practical LiDAR Spoofing Attack against Vehicles Driving...

Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

MASTERKEY: Automated Jailbreaking of Large Language Model Chatbots

Gelei Deng (Nanyang Technological University), Yi Liu (Nanyang Technological University), Yuekang Li (University of New South Wales), Kailong Wang (Huazhong University of Science and Technology), Ying Zhang (Virginia Tech), Zefeng Li (Nanyang Technological University), Haoyu Wang (Huazhong University of Science and Technology), Tianwei Zhang (Nanyang Technological University), Yang Liu (Nanyang Technological University)

Read More

WIP: Towards a Certifiably Robust Defense for Multi-label Classifiers...

Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

Read More

DEMASQ: Unmasking the ChatGPT Wordsmith

Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More