Yuri Gbur (Technische Universität Berlin), Florian Tschorsch (Technische Universität Berlin)

The QUIC protocol is gaining more and more traction through its recent standardization and the rising interest by various big tech companies, developing new implementations. QUIC promises to make security and privacy a first-class citizen; yet, challenging these claims is of utmost importance. To this end, this paper provides an initial analysis of client-side request forgery attacks that directly emerge from the QUIC protocol design and not from common vulnerabilities. In particular, we investigate three request forgery attack modalities with respect to their capabilities to be used for protocol impersonation and traffic amplification. We analyze the controllable attack space of the respective protocol messages and demonstrate that one of the attack modalities can indeed be utilized to impersonate other UDP-based protocols, e.g., DNS requests. Furthermore, we identify traffic amplification vectors. Although the QUIC protocol specification states anti-amplification limits, our evaluation of 13 QUIC server implementations shows that in some cases these mitigations are missing or insufficiently implemented. Lastly, we propose mitigation approaches for protocol impersonation and discuss ambiguities in the specification.

View More Papers

Improving In-vehicle Networks Intrusion Detection Using On-Device Transfer Learning

Sampath Rajapaksha (Robert Gordon University), Harsha Kalutarage (Robert Gordon University), M.Omar Al-Kadri (Birmingham City University), Andrei Petrovski (Robert Gordon University), Garikayi Madzudzo (Horiba Mira Ltd)

Read More

An OS-agnostic Approach to Memory Forensics

Andrea Oliveri (EURECOM), Matteo Dell'Amico (University of Genoa), Davide Balzarotti (EURECOM)

Read More

podft: On Accelerating Dynamic Taint Analysis with Precise Path...

Zhiyou Tian (Xidian University), Cong Sun (Xidian University), Dongrui Zeng (Palo Alto Networks), Gang Tan (Pennsylvania State University)

Read More

Detection and Resolution of Control Decision Anomalies

Prof. Kang Shin (Kevin and Nancy O'Connor Professor of Computer Science, and the Founding Director of the Real-Time Computing Laboratory (RTCL) in the Electrical Engineering and Computer Science Department at the University of Michigan)

Read More