Yuri Gbur (Technische Universität Berlin), Florian Tschorsch (Technische Universität Berlin)

The QUIC protocol is gaining more and more traction through its recent standardization and the rising interest by various big tech companies, developing new implementations. QUIC promises to make security and privacy a first-class citizen; yet, challenging these claims is of utmost importance. To this end, this paper provides an initial analysis of client-side request forgery attacks that directly emerge from the QUIC protocol design and not from common vulnerabilities. In particular, we investigate three request forgery attack modalities with respect to their capabilities to be used for protocol impersonation and traffic amplification. We analyze the controllable attack space of the respective protocol messages and demonstrate that one of the attack modalities can indeed be utilized to impersonate other UDP-based protocols, e.g., DNS requests. Furthermore, we identify traffic amplification vectors. Although the QUIC protocol specification states anti-amplification limits, our evaluation of 13 QUIC server implementations shows that in some cases these mitigations are missing or insufficiently implemented. Lastly, we propose mitigation approaches for protocol impersonation and discuss ambiguities in the specification.

View More Papers

WIP: Augmenting Vehicle Safety With Passive BLE

Noah T. Curran (University of Michigan), Kang G. Shin (University of Michigan), William Hass (Lear Corporation), Lars Wolleschensky (Lear Corporation), Rekha Singoria (Lear Corporation), Isaac Snellgrove (Lear Corporation), Ran Tao (Lear Corporation)

Read More

Double and Nothing: Understanding and Detecting Cryptocurrency Giveaway Scams

Xigao Li (Stony Brook University), Anurag Yepuri (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

SoundLock: A Novel User Authentication Scheme for VR Devices...

Huadi Zhu (The University of Texas at Arlington), Mingyan Xiao (The University of Texas at Arlington), Demoria Sherman (The University of Texas at Arlington), Ming Li (The University of Texas at Arlington)

Read More