Yuri Gbur (Technische Universität Berlin), Florian Tschorsch (Technische Universität Berlin)

The QUIC protocol is gaining more and more traction through its recent standardization and the rising interest by various big tech companies, developing new implementations. QUIC promises to make security and privacy a first-class citizen; yet, challenging these claims is of utmost importance. To this end, this paper provides an initial analysis of client-side request forgery attacks that directly emerge from the QUIC protocol design and not from common vulnerabilities. In particular, we investigate three request forgery attack modalities with respect to their capabilities to be used for protocol impersonation and traffic amplification. We analyze the controllable attack space of the respective protocol messages and demonstrate that one of the attack modalities can indeed be utilized to impersonate other UDP-based protocols, e.g., DNS requests. Furthermore, we identify traffic amplification vectors. Although the QUIC protocol specification states anti-amplification limits, our evaluation of 13 QUIC server implementations shows that in some cases these mitigations are missing or insufficiently implemented. Lastly, we propose mitigation approaches for protocol impersonation and discuss ambiguities in the specification.

View More Papers

The “Beatrix” Resurrections: Robust Backdoor Detection via Gram Matrices

Wanlun Ma (Swinburne University of Technology), Derui Wang (CSIRO’s Data61), Ruoxi Sun (The University of Adelaide & CSIRO's Data61), Minhui Xue (CSIRO's Data61), Sheng Wen (Swinburne University of Technology), Yang Xiang (Digital Research & Innovation Capability Platform, Swinburne University of Technology)

Read More

Thwarting Smartphone SMS Attacks at the Radio Interface Layer

Haohuang Wen (Ohio State University), Phillip Porras (SRI International), Vinod Yegneswaran (SRI International), Zhiqiang Lin (Ohio State University)

Read More

ReScan: A Middleware Framework for Realistic and Robust Black-box...

Kostas Drakonakis (FORTH), Sotiris Ioannidis (Technical University of Crete), Jason Polakis (University of Illinois at Chicago)

Read More