Qihang Zhou (Institute of Information Engineering, Chinese Academy of Sciences), Wenzhuo Cao (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences), Peng Liu (The Pennsylvania State University, USA), Shengzhi Zhang (Department of Computer Science, Metropolitan College, Boston University, USA), Jiayun Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Shaowen Xu (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Zhenyu Song (Institute of Information Engineering, Chinese Academy of Science)

Containers have become widely adopted in cloud platforms due to their efficient deployment and high resource utilization. However, their weak isolation has always posed a significant security concern. In this paper, we propose RContainer, a novel secure container architecture that protects containers from untrusted operating systems and enforces strong isolation among containers by extending ARM Confidential Computing Architecture (CCA) hardware primitives. RContainer introduces a small, trusted mini-OS that runs alongside the deprivileged OS, responsible for monitoring the control flow between the operating system and containers. Additionally, RContainer uses shim-style isolation, creating an isolated physical address space called con-shim for each container at the kernel layer through the Granule Protection Check mechanism. We have implemented RContainer on ARMv9-A Fixed Virtual Platform and ARMv8 hardware SoC for security analysis and performance evaluation. Experimental results demonstrate that RContainer can significantly enhance container security with a modest performance overhead and a minimal Trusted Computing Base (TCB).

View More Papers

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More

Uncovering the iceberg from the tip: Generating API Specifications...

Miaoqian Lin (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Yi Yang (Institute of Information Engineering, Chinese Academy of…

Read More

Diffence: Fencing Membership Privacy With Diffusion Models

Yuefeng Peng (University of Massachusetts Amherst), Ali Naseh (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

Poster: Understanding User Acceptance of Privacy Labels: Barriers and...

Jingwen Yan (Clemson University), Mohammed Aldeen (Clemson University), Jalil Harris (Clemson University), Kellen Grossenbacher (Clemson University), Aurore Munyaneza (Texas Tech University), Song Liao (Texas Tech University), Long Cheng (Clemson University)

Read More