Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Content Delivery Networks (CDNs) are ubiquitous middleboxes designed to enhance the performance of hosted websites and shield them from various attacks. Numerous notable studies show that CDNs modify a client's request when forwarding it to the original server. Multiple inconsistencies in this forwarding operation have been found to potentially result in security vulnerabilities like DoS attacks. Nonetheless, existing research lacks a systematic approach to studying CDN forwarding request inconsistencies.

In this work, we present ReqsMiner, an innovative fuzzing framework developed to discover previously unexamined inconsistencies in CDN forwarding requests. The framework uses techniques derived from reinforcement learning to generate valid test cases, even with minimal feedback, and incorporates real field values into the grammar-based fuzzer. With the help of ReqsMiner, we comprehensively test 22 major CDN providers and uncover a wealth of hitherto unstudied CDN forwarding request inconsistencies. Moreover, the application of specialized analyzers enables ReqsMiner to extend its capabilities, evolving into a framework capable of detecting specific types of attacks. By extension, our work further identifies three novel types of HTTP amplification DoS attacks and uncovers 74 new potential DoS vulnerabilities with an amplification factor that can reach up to 2,000 generally, and even 1,920,000 under specific conditions. The vulnerabilities detected were responsibly disclosed to the affected CDN vendors, and mitigation suggestions were proposed. Our work contributes to fortifying CDN security, thereby enhancing their resilience against malicious attacks and preventing misuse.

View More Papers

LibAFL QEMU: A Library for Fuzzing-oriented Emulation

Romain Malmain (EURECOM), Andrea Fioraldi (EURECOM), Aurelien Francillon (EURECOM)

Read More

Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering

Rui Zhu (Indiana University Bloominton), Di Tang (Indiana University Bloomington), Siyuan Tang (Indiana University Bloomington), Zihao Wang (Indiana University Bloomington), Guanhong Tao (Purdue University), Shiqing Ma (University of Massachusetts Amherst), XiaoFeng Wang (Indiana University Bloomington), Haixu Tang (Indiana University, Bloomington)

Read More

Content Censorship in the InterPlanetary File System

Srivatsan Sridhar (Stanford University), Onur Ascigil (Lancaster University), Navin Keizer (University College London), François Genon (UCLouvain), Sébastien Pierre (UCLouvain), Yiannis Psaras (Protocol Labs), Etienne Riviere (UCLouvain), Michał Król (City, University of London)

Read More

MASTERKEY: Automated Jailbreaking of Large Language Model Chatbots

Gelei Deng (Nanyang Technological University), Yi Liu (Nanyang Technological University), Yuekang Li (University of New South Wales), Kailong Wang (Huazhong University of Science and Technology), Ying Zhang (Virginia Tech), Zefeng Li (Nanyang Technological University), Haoyu Wang (Huazhong University of Science and Technology), Tianwei Zhang (Nanyang Technological University), Yang Liu (Nanyang Technological University)

Read More