Aditya Sirish A Yelgundhalli (New York University), Patrick Zielinski (New York University), Reza Curtmola (New Jersey Institute of Technology), Justin Cappos (New York University)

Git is the most popular version control system today, with Git forges such as GitHub, GitLab, and Bitbucket used to add functionality. Significantly, these forges are used to enforce security controls. However, due to the lack of an open protocol for ensuring a repository's integrity, forges cannot prove themselves to be trustworthy, and have to carry the responsibility of being non-verifiable trusted third parties in modern software supply chains.

In this paper, we present textbf{gittuf}, a system that decentralizes Git security and enables every user to contribute to collectively enforcing the repository's security. First, gittuf enables distributing of policy declaration and management responsibilities among more parties such that no single user is trusted entirely or unilaterally. Second, gittuf decentralizes the tracking of repository activity, ensuring that a single entity cannot manipulate repository events. Third, gittuf decentralizes policy enforcement by enabling all developers to independently verify the policy, eliminating the single point of trust placed in the forge as the only arbiter for whether a change in the repository is authorized. Thus, gittuf can provide strong security guarantees in the event of a compromise of the centralized forge, the underlying infrastructure, or a subset of privileged developers trusted to set policy. gittuf also implements policy features that can protect against unauthorized changes to branches and tags (emph{i.e.}, pushes) as well as files/folders (emph{i.e.}, commits). Our analysis of gittuf shows that its properties and policy features provide protections against previously seen version control system attacks. In addition, our evaluation of gittuf shows it is viable even for large repositories with a high volume of activity such as those of Git and Kubernetes (less than 4% storage overhead and under 0.59s of time to verify each push).

Currently, gittuf is an OpenSSF sandbox project hosted by the Linux Foundation. gittuf is being used in projects hosted by the OpenSSF and the CNCF, and an enterprise pilot at Bloomberg is underway.

View More Papers

Dissecting Payload-based Transaction Phishing on Ethereum

Zhuo Chen (Zhejiang University), Yufeng Hu (Zhejiang University), Bowen He (Zhejiang University), Dong Luo (Zhejiang University), Lei Wu (Zhejiang University), Yajin Zhou (Zhejiang University)

Read More

DeFiIntel: A Dataset Bridging On-Chain and Off-Chain Data for...

Iori Suzuki (Graduate School of Environment and Information Sciences, Yokohama National University), Yin Minn Pa Pa (Institute of Advanced Sciences, Yokohama National University), Nguyen Thi Van Anh (Institute of Advanced Sciences, Yokohama National University), Katsunari Yoshioka (Graduate School of Environment and Information Sciences, Yokohama National University)

Read More

UI-CTX: Understanding UI Behaviors with Code Contexts for Mobile...

Jiawei Li (Beihang University & National University of Singapore), Jiahao Liu (National University of Singapore), Jian Mao (Beihang University), Jun Zeng (National University of Singapore), Zhenkai Liang (National University of Singapore)

Read More

Tweezers: A Framework for Security Event Detection via Event...

Jian Cui (Indiana University), Hanna Kim (KAIST), Eugene Jang (S2W Inc.), Dayeon Yim (S2W Inc.), Kicheol Kim (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST), Xiaojing Liao (Indiana University)

Read More