Mengying Wu (Fudan University), Geng Hong (Fudan University), Jinsong Chen (Fudan University), Qi Liu (Fudan University), Shujun Tang (QI-ANXIN Technology Research Institute; Tsinghua University), Youhao Li (QI-ANXIN Technology Research Institute), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Min Yang (Fudan University)

In the digital age, device search engines such as Censys and Shodan play crucial roles by scanning the internet to catalog online devices, aiding in the understanding and mitigation of network security risks. While previous research has used these tools to detect devices and assess vulnerabilities, there remains uncertainty regarding the assets they scan, the strategies they employ, and whether they adhere to ethical guidelines.

This study presents the first comprehensive examination of these engines’ operational and ethical dimensions. We developed a novel framework to trace the IP addresses utilized by these engines and collected 1,407 scanner IPs. By uncovering their IPs, we gain deep insights into the actions of device search engines for the first time and gain original findings. By employing 28 honeypots to monitor their scanning activities extensively in one year, we demonstrate that users can hardly evade scans by blocklisting scanner IPs or migrating service ports. Our findings reveal significant ethical concerns, including a lack of transparency, harmlessness, and anonymity. Notably, these engines often fail to provide transparency and do not allow users to opt out of scans. Further, the engines send malformed requests, attempt to access excessive details without authorization, and even publish personally identifiable information(PII) and screenshots on search results. These practices compromise user privacy and expose devices to further risks by potentially aiding malicious entities. This paper emphasizes the urgent need for stricter ethical standards and enhanced transparency in the operations of device search engines, offering crucial insights into safeguarding against invasive scanning practices and protecting digital infrastructures.

View More Papers

Towards LLM-Assisted Vulnerability Detection and Repair for Open-Source 5G...

Rupam Patir (University at Buffalo), Qiqing Huang (University at Buffalo), Keyan Guo (University at Buffalo), Wanda Guo (Texas A&M University), Guofei Gu (Texas A&M University), Haipeng Cai (University at Buffalo), Hongxin Hu (University at Buffalo)

Read More

PropertyGPT: LLM-driven Formal Verification of Smart Contracts through Retrieval-Augmented...

Ye Liu (Singapore Management University), Yue Xue (MetaTrust Labs), Daoyuan Wu (The Hong Kong University of Science and Technology), Yuqiang Sun (Nanyang Technological University), Yi Li (Nanyang Technological University), Miaolei Shi (MetaTrust Labs), Yang Liu (Nanyang Technological University)

Read More

A Method to Facilitate Membership Inference Attacks in Deep...

Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Read More

Revisiting EM-based Estimation for Locally Differentially Private Protocols

Yutong Ye (Institute of software, Chinese Academy of Sciences & Zhongguancun Laboratory, Beijing, PR.China.), Tianhao Wang (University of Virginia), Min Zhang (Institute of Software, Chinese Academy of Sciences), Dengguo Feng (Institute of Software, Chinese Academy of Sciences)

Read More