Eric Pauley (University of Wisconsin–Madison), Kyle Domico (University of Wisconsin–Madison), Blaine Hoak (University of Wisconsin–Madison), Ryan Sheatsley (University of Wisconsin–Madison), Quinn Burke (University of Wisconsin–Madison), Yohan Beugin (University of Wisconsin–Madison), Engin Kirda (Northeastern University), Patrick McDaniel (University of Wisconsin–Madison)

Public clouds necessitate dynamic resource allocation and sharing. However, the dynamic allocation of IP addresses can be abused by adversaries to source malicious traffic, bypass rate limiting systems, and even capture traffic intended for other cloud tenants. As a result, both the cloud provider and their customers are put at risk, and defending against these threats requires a rigorous analysis of tenant behavior, adversarial strategies, and cloud provider policies. In this paper, we develop a practical defense for IP address allocation through such an analysis. We first develop a statistical model of cloud tenant deployment behavior based on literature and measurement of deployed systems. Through this, we analyze IP allocation policies under existing and novel threat models. In response to our stronger proposed threat model, we design IP scan segmentation, an IP allocation policy that protects the address pool against adversarial scanning even when an adversary is not limited by number of cloud tenants. Through empirical evaluation on both synthetic and real-world allocation traces, we show that IP scan segmentation reduces adversaries' ability to rapidly allocate addresses, protecting both address space reputation and cloud tenant data. In this way, we show that principled analysis and implementation of cloud IP address allocation can lead to substantial security gains for tenants and their users.

View More Papers

Evaluating LLMs Towards Automated Assessment of Privacy Policy Understandability

Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Read More

SketchFeature: High-Quality Per-Flow Feature Extractor Towards Security-Aware Data Plane

Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Read More

Truman: Constructing Device Behavior Models from OS Drivers to...

Zheyu Ma (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; EPFL; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Qiang Liu (EPFL), Zheming Li (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Tingting Yin (Zhongguancun…

Read More

Revealing the Black Box of Device Search Engine: Scanning...

Mengying Wu (Fudan University), Geng Hong (Fudan University), Jinsong Chen (Fudan University), Qi Liu (Fudan University), Shujun Tang (QI-ANXIN Technology Research Institute; Tsinghua University), Youhao Li (QI-ANXIN Technology Research Institute), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Min Yang (Fudan University)

Read More