Eric Pauley (University of Wisconsin–Madison), Kyle Domico (University of Wisconsin–Madison), Blaine Hoak (University of Wisconsin–Madison), Ryan Sheatsley (University of Wisconsin–Madison), Quinn Burke (University of Wisconsin–Madison), Yohan Beugin (University of Wisconsin–Madison), Engin Kirda (Northeastern University), Patrick McDaniel (University of Wisconsin–Madison)

Public clouds necessitate dynamic resource allocation and sharing. However, the dynamic allocation of IP addresses can be abused by adversaries to source malicious traffic, bypass rate limiting systems, and even capture traffic intended for other cloud tenants. As a result, both the cloud provider and their customers are put at risk, and defending against these threats requires a rigorous analysis of tenant behavior, adversarial strategies, and cloud provider policies. In this paper, we develop a practical defense for IP address allocation through such an analysis. We first develop a statistical model of cloud tenant deployment behavior based on literature and measurement of deployed systems. Through this, we analyze IP allocation policies under existing and novel threat models. In response to our stronger proposed threat model, we design IP scan segmentation, an IP allocation policy that protects the address pool against adversarial scanning even when an adversary is not limited by number of cloud tenants. Through empirical evaluation on both synthetic and real-world allocation traces, we show that IP scan segmentation reduces adversaries' ability to rapidly allocate addresses, protecting both address space reputation and cloud tenant data. In this way, we show that principled analysis and implementation of cloud IP address allocation can lead to substantial security gains for tenants and their users.

View More Papers

type++: Prohibiting Type Confusion with Inline Type Information

Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Read More

Moneta: Ex-Vivo GPU Driver Fuzzing by Recalling In-Vivo Execution...

Joonkyo Jung (Department of Computer Science, Yonsei University), Jisoo Jang (Department of Computer Science, Yonsei University), Yongwan Jo (Department of Computer Science, Yonsei University), Jonas Vinck (DistriNet, KU Leuven), Alexios Voulimeneas (CYS, TU Delft), Stijn Volckaert (DistriNet, KU Leuven), Dokyung Song (Department of Computer Science, Yonsei University)

Read More

Secure Transformer Inference Made Non-interactive

Jiawen Zhang (Zhejiang University), Xinpeng Yang (Zhejiang University), Lipeng He (University of Waterloo), Kejia Chen (Zhejiang University), Wen-jie Lu (Zhejiang University), Yinghao Wang (Zhejiang University), Xiaoyang Hou (Zhejiang University), Jian Liu (Zhejiang University), Kui Ren (Zhejiang University), Xiaohu Yang (Zhejiang University)

Read More