Eric Pauley (University of Wisconsin–Madison), Kyle Domico (University of Wisconsin–Madison), Blaine Hoak (University of Wisconsin–Madison), Ryan Sheatsley (University of Wisconsin–Madison), Quinn Burke (University of Wisconsin–Madison), Yohan Beugin (University of Wisconsin–Madison), Engin Kirda (Northeastern University), Patrick McDaniel (University of Wisconsin–Madison)

Public clouds necessitate dynamic resource allocation and sharing. However, the dynamic allocation of IP addresses can be abused by adversaries to source malicious traffic, bypass rate limiting systems, and even capture traffic intended for other cloud tenants. As a result, both the cloud provider and their customers are put at risk, and defending against these threats requires a rigorous analysis of tenant behavior, adversarial strategies, and cloud provider policies. In this paper, we develop a practical defense for IP address allocation through such an analysis. We first develop a statistical model of cloud tenant deployment behavior based on literature and measurement of deployed systems. Through this, we analyze IP allocation policies under existing and novel threat models. In response to our stronger proposed threat model, we design IP scan segmentation, an IP allocation policy that protects the address pool against adversarial scanning even when an adversary is not limited by number of cloud tenants. Through empirical evaluation on both synthetic and real-world allocation traces, we show that IP scan segmentation reduces adversaries' ability to rapidly allocate addresses, protecting both address space reputation and cloud tenant data. In this way, we show that principled analysis and implementation of cloud IP address allocation can lead to substantial security gains for tenants and their users.

View More Papers

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More

Deanonymizing Device Identities via Side-channel Attacks in Exclusive-use IoTs...

Christopher Ellis (The Ohio State University), Yue Zhang (Drexel University), Mohit Kumar Jangid (The Ohio State University), Shixuan Zhao (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

Fuzzing Space Communication Protocols

Stephan Havermans (IMDEA Software Institute), Lars Baumgaertner, Jussi Roberts, Marcus Wallum (European Space Agency), Juan Caballero (IMDEA Software Institute)

Read More