Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Effectively mitigating side-channel attacks (SCAs) in Trusted Execution Environments (TEEs) remains challenging despite advances in existing defenses. Current detection-based defenses hinge on observing abnormal victim performance characteristics but struggle to detect attacks leaking smaller portions of the secret across multiple executions. Limitations of existing detection-based defenses stem from various factors, including the absence of a trusted microarchitectural data source in TEEs, low-quality available data, inflexibility of victim responses, and platform-specific constraints. We contend that the primary obstacles to effective detection techniques can be attributed to the lack of direct access to precise microarchitectural information within TEEs.

We propose SENSE, a solution that actively exposes underlying microarchitectural information to userspace TEEs. SENSE enables userspace software in TEEs to subscribe to fine-grained microarchitectural events and utilize the events as a means to contextualize the ongoing microarchitectural states. We initially demonstrate SENSE’s capability by applying it to defeat the state-of-the-art cache-based side-channel attacks. We conduct a comprehensive security analysis to ensure that SENSE does not leak more information than a system without it does. We prototype SENSE on a gem5-based emulator, and our evaluation shows that SENSE is secure, can effectively defeats cache SCAs, and incurs negligible performance overhead (1.2%) under benign situations.

View More Papers

Group-based Robustness: A General Framework for Customized Robustness in...

Weiran Lin (Carnegie Mellon University), Keane Lucas (Carnegie Mellon University), Neo Eyal (Tel Aviv University), Lujo Bauer (Carnegie Mellon University), Michael K. Reiter (Duke University), Mahmood Sharif (Tel Aviv University)

Read More

CP-IoT: A Cross-Platform Monitoring System for Smart Home

Hai Lin (Tsinghua University), Chenglong Li (Tsinghua University), Jiahai Yang (Tsinghua University), Zhiliang Wang (Tsinghua University), Linna Fan (National University of Defense Technology), Chenxin Duan (Tsinghua University)

Read More

Pisces: Private and Compliable Cryptocurrency Exchange

Ya-Nan Li (The University of Sydney), Tian Qiu (The University of Sydney), Qiang Tang (The University of Sydney)

Read More

SURGEON: Performant, Flexible and Accurate Re-Hosting via Transplantation

Florian Hofhammer (EPFL), Marcel Busch (EPFL), Qinying Wang (EPFL and Zhejiang University), Manuel Egele (Boston University), Mathias Payer (EPFL)

Read More