Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Simon Rohlmann (Ruhr University Bochum)

Digitally signed PDFs are used in contracts and invoices to guarantee the authenticity and integrity of their content. A user opening a signed PDF expects to see a warning in case of *any* modification. In 2019, Mladenov et al. revealed various parsing vulnerabilities in PDF viewer implementations. They showed attacks that could modify PDF documents without invalidating the signature. As a consequence, affected vendors of PDF viewers implemented countermeasures preventing *all* attacks.

This paper introduces a novel class of attacks, which we call *shadow* attacks. The *shadow* attacks circumvent all existing countermeasures and break the integrity protection of digitally signed PDFs. Compared to previous attacks, the *shadow* attacks do not abuse implementation issues in a PDF viewer. In contrast, *shadow* attacks use the enormous flexibility provided by the PDF specification so that *shadow* documents remain standard-compliant. Since *shadow* attacks abuse only legitimate features, they are hard to mitigate.

Our results reveal that 16 (including Adobe Acrobat and Foxit Reader) of the 29 PDF viewers tested were vulnerable to *shadow* attacks. We introduce our tool *PDF-Attacker* which can automatically generate *shadow* attacks. In addition, we implemented *PDF-Detector* to prevent *shadow* documents from being signed or forensically detect exploits after being applied to signed PDFs.

View More Papers

Securing CAN Traffic on J1939 Networks

Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Read More

Understanding the Growth and Security Considerations of ECS

Athanasios Kountouras (Georgia Institute of Technology), Panagiotis Kintis (Georgia Institute of Technology), Athanasios Avgetidis (Georgia Institute of Technology), Thomas Papastergiou (Georgia Institute of Technology), Charles Lever (Georgia Institute of Technology), Michalis Polychronakis (Stony Brook University), Manos Antonakakis (Georgia Institute of Technology)

Read More

Differential Training: A Generic Framework to Reduce Label Noises...

Jiayun Xu (Singapore Management University), Yingjiu Li (University of Oregon), Robert H. Deng (Singapore Management University)

Read More

Polypyus – The Firmware Historian

Jan Friebertshauser, Florian Kosterhon, Jiska Classen, Matthias Hollick (Secure Mobile Networking Lab, TU Darmstad)

Read More