Beomjin Jin (Sungkyunkwan University), Eunsoo Kim (Sungkyunkwan University), Hyunwoo Lee (KENTECH), Elisa Bertino (Purdue University), Doowon Kim (University of Tennessee, Knoxville), Hyoungshick Kim (Sungkyunkwan University)

The sharing of Cyber Threat Intelligence (CTI) across organizations is gaining traction, as it can automate threat analysis and improve security awareness. However, limited empirical studies exist on the prevalent types of cybersecurity threat data and their effectiveness in mitigating cyber attacks. We propose a framework named CTI-Lense to collect and analyze the volume, timeliness, coverage, and quality of Structured Threat Information eXpression (STIX) data, a de facto standard CTI format, from a list of publicly available CTI sources. We collected about 6 million STIX data objects from October 31, 2014 to April 10, 2023 from ten data sources and analyzed their characteristics. Our analysis reveals that STIX data sharing has steadily increased in recent years, but the volume of STIX data shared is still relatively low to cover all cyber threats. Additionally, only a few types of threat data objects have been shared, with malware signatures and URLs accounting for more than 90% of the collected data. While URLs are usually shared promptly, with about 72% of URLs shared earlier than or on the same day as VirusTotal, the sharing of malware signatures is significantly slower. Furthermore, we found that 19% of the Threat actor data contained incorrect information, and only 0.09% of the Indicator data provided security rules to detect cyber attacks. Based on our findings, we recommend practical considerations for effective and scalable STIX data sharing among organizations.

View More Papers

LARMix: Latency-Aware Routing in Mix Networks

Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (KU Leuven), Claudia Diaz (KU Leuven)

Read More

Securing Lidar Communication through Watermark-based Tampering Detection (Long)

Michele Marazzi, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

Read More

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

Symphony: Path Validation at Scale

Anxiao He (Zhejiang University), Jiandong Fu (Zhejiang University), Kai Bu (Zhejiang University), Ruiqi Zhou (Zhejiang University), Chenlu Miao (Zhejiang University), Kui Ren (Zhejiang University)

Read More