Michele Marazzi, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

ZOOX AutoDriving Security Award Runner-up!

With the increasing interest in autonomous vehicles (AVs), ensuring their safety and security is becoming crucial. The introduction of advanced features has increased the need for various interfaces to communicate with the external world, creating new potential attack vectors that attackers can exploit to alter sensor data. LiDAR sensors are widely employed to support autonomous driving features and generate point cloud data used by ADAS to 3D map the vehicle’s surroundings. Tampering attacks on LiDAR-generated data can compromise the vehicle’s functionalities and seriously threaten passengers and other road users. Existing approaches to LiDAR data tampering detection show security flaws and can be bypassed by attackers through design vulnerabilities. This paper proposes a novel approach for tampering detection of LiDAR-generated data in AVs, employing a watermarking technique. We validate our approach through experiments to prove its feasibility in realworld time-constrained scenarios and its efficacy in detecting LiDAR tampering attacks. Our approach performs better when compared to the current state-of-the-art LiDAR watermarking techniques while addressing critical issues related to watermark security and imperceptibility.

View More Papers

Towards Automated Regulation Analysis for Effective Privacy Compliance

Sunil Manandhar (IBM T.J. Watson Research Center), Kapil Singh (IBM T.J. Watson Research Center), Adwait Nadkarni (William & Mary)

Read More

From Hardware Fingerprint to Access Token: Enhancing the Authentication...

Yue Xiao (Wuhan University), Yi He (Tsinghua University), Xiaoli Zhang (Zhejiang University of Technology), Qian Wang (Wuhan University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Qi Li (Tsinghua University)

Read More

Formally Verified Software Update Management System in Automotive

Jaewan Seo, Jiwon Kwak, Seungjoo Kim (Korea University)

Read More

Group-based Robustness: A General Framework for Customized Robustness in...

Weiran Lin (Carnegie Mellon University), Keane Lucas (Carnegie Mellon University), Neo Eyal (Tel Aviv University), Lujo Bauer (Carnegie Mellon University), Michael K. Reiter (Duke University), Mahmood Sharif (Tel Aviv University)

Read More