Michele Marazzi, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

ZOOX AutoDriving Security Award Runner-up!

With the increasing interest in autonomous vehicles (AVs), ensuring their safety and security is becoming crucial. The introduction of advanced features has increased the need for various interfaces to communicate with the external world, creating new potential attack vectors that attackers can exploit to alter sensor data. LiDAR sensors are widely employed to support autonomous driving features and generate point cloud data used by ADAS to 3D map the vehicle’s surroundings. Tampering attacks on LiDAR-generated data can compromise the vehicle’s functionalities and seriously threaten passengers and other road users. Existing approaches to LiDAR data tampering detection show security flaws and can be bypassed by attackers through design vulnerabilities. This paper proposes a novel approach for tampering detection of LiDAR-generated data in AVs, employing a watermarking technique. We validate our approach through experiments to prove its feasibility in realworld time-constrained scenarios and its efficacy in detecting LiDAR tampering attacks. Our approach performs better when compared to the current state-of-the-art LiDAR watermarking techniques while addressing critical issues related to watermark security and imperceptibility.

View More Papers

LiDAR Spoofing Meets the New-Gen: Capability Improvements, Broken Assumptions,...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More

Resilient Routing for Low Earth Orbit Mega-Constellation Networks

Alexander Kedrowitsch (Virginia Tech), Jonathan Black (Virginia Tech) Daphne Yao (Virginia Tech)

Read More

A Cross-Verification Approach with Publicly Available Map for Detecting...

Takami Sato, Ningfei Wang (University of California, Irvine), Yueqiang Cheng (NIO Security Research), Qi Alfred Chen (University of California, Irvine)

Read More

The impact of data-heavy, post-quantum TLS 1.3 on the...

Panos Kampanakis and Will Childs-Klein (AWS)

Read More