Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Jiahao Cao (Institute for Network Sciences and Cyberspace, Tsinghua University)

Reentrancy vulnerabilities in Ethereum smart contracts have caused significant financial losses, prompting the creation of several automated reentrancy detectors. However, these detectors frequently yield a high rate of false positives due to coarse detection rules, often misclassifying contracts protected by anti-reentrancy patterns as vulnerable. Thus, there is a critical need for the development of specialized automated tools to assist these detectors in accurately identifying anti-reentrancy patterns. While existing code analysis techniques show promise for this specific task, they still face significant challenges in recognizing anti-reentrancy patterns. These challenges are primarily due to the complex and varied features of anti-reentrancy patterns, compounded by insufficient prior knowledge about these features.

This paper introduces AutoAR, an automated recognition system designed to explore and identify prevalent anti-reentrancy patterns in Ethereum contracts. AutoAR utilizes a specialized graph representation, RentPDG, combined with a data filtration approach, to effectively capture anti-reentrancy-related semantics from a large pool of contracts. Based on RentPDGs extracted from these contracts, AutoAR employs a recognition model that integrates a graph auto-encoder with a clustering technique, specifically tailored for precise anti-reentrancy pattern identification. Experimental results show AutoAR can assist existing detectors in identifying 12 prevalent anti-reentrancy patterns with 89% accuracy, and when integrated into the detection workflow, it significantly reduces false positives by over 85%.

View More Papers

Iris: Dynamic Privacy Preserving Search in Authenticated Chord Peer-to-Peer...

Angeliki Aktypi (University of Oxford), Kasper Rasmussen (University of Oxford)

Read More

Power-Related Side-Channel Attacks using the Android Sensor Framework

Mathias Oberhuber (Graz University of Technology), Martin Unterguggenberger (Graz University of Technology), Lukas Maar (Graz University of Technology), Andreas Kogler (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More

VulShield: Protecting Vulnerable Code Before Deploying Patches

Yuan Li (Zhongguancun Laboratory & Tsinghua University), Chao Zhang (Tsinghua University & JCSS & Zhongguancun Laboratory), Jinhao Zhu (UC Berkeley), Penghui Li (Zhongguancun Laboratory), Chenyang Li (Peking University), Songtao Yang (Zhongguancun Laboratory), Wende Tan (Tsinghua University)

Read More

Trust or Bust: A Survey of Threats in Decentralized...

Hetvi Shastri (University of Massachusetts Amherst), Akanksha Atrey (Nokia Bell Labs), Andre Beck (Nokia Bell Labs), Nirupama Ravi (Nokia Bell Labs)

Read More