Philipp Mackensen (Ruhr University Bochum), Paul Staat (Max Planck Institute for Security and Privacy), Stefan Roth (Ruhr University Bochum), Aydin Sezgin (Ruhr University Bochum), Christof Paar (Max Planck Institute for Security and Privacy), Veelasha Moonsamy (Ruhr University Bochum)

Wireless communication infrastructure is a cornerstone of modern digital society, yet it remains vulnerable to the persistent threat of wireless jamming. Attackers can easily create radio interference to overshadow legitimate signals, leading to denial of service.
The broadcast nature of radio signal propagation makes such attacks possible in the first place, but at the same time poses a challenge for the attacker: The jamming signal does not only reach the victim device but also other neighboring devices, preventing precise attack targeting.

In this work, we solve this challenge by leveraging the emerging RIS technology, for the first time, for precise delivery of jamming signals. In particular, we propose a novel approach that allows for environment-adaptive spatial control of wireless jamming signals, granting a new degree of freedom to perform jamming attacks.
We explore this novel method with extensive experimentation and demonstrate that our approach can disable the wireless communication of one or multiple victim devices while leaving neighboring devices unaffected. Notably, our method extends to challenging scenarios where wireless devices are very close to each other: We demonstrate complete denial-of-service of a Wi-Fi device while a second device located at a distance as close as 5 mm remains unaffected, sustaining wireless communication at a data rate of 25 Mbit/s. Lastly, we conclude by proposing potential countermeasures to thwart RIS-based spatial domain wireless jamming attacks.

View More Papers

RACONTEUR: A Knowledgeable, Insightful, and Portable LLM-Powered Shell Command...

Jiangyi Deng (Zhejiang University), Xinfeng Li (Zhejiang University), Yanjiao Chen (Zhejiang University), Yijie Bai (Zhejiang University), Haiqin Weng (Ant Group), Yan Liu (Ant Group), Tao Wei (Ant Group), Wenyuan Xu (Zhejiang University)

Read More

BumbleBee: Secure Two-party Inference Framework for Large Transformers

Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Read More

Manifoldchain: Maximizing Blockchain Throughput via Bandwidth-Clustered Sharding

Chunjiang Che (The Hong Kong University of Science and Technology (Guangzhou)), Songze Li (Southeast University), Xuechao Wang (The Hong Kong University of Science and Technology (Guangzhou))

Read More

SHAFT: Secure, Handy, Accurate and Fast Transformer Inference

Andes Y. L. Kei (Chinese University of Hong Kong), Sherman S. M. Chow (Chinese University of Hong Kong)

Read More