Sebastian Poeplau (EURECOM and Code Intelligence), Aurélien Francillon (EURECOM)

Symbolic execution is a powerful technique for software analysis and bug detection. Compilation-based symbolic execution is a recently proposed flavor that has been shown to improve the performance of symbolic execution significantly when source code is available. We demonstrate a novel technique to enable compilation-based symbolic execution of binaries (i.e., without the need for source code). Our system, SymQEMU, builds on top of QEMU, modifying the intermediate representation of the target program before translating it to the host architecture. This enables SymQEMU to compile symbolic-execution capabilities into binaries and reap the associated performance benefits while maintaining architecture independence.

We present our approach and implementation, and we show that it outperforms the state-of-the-art binary symbolic executors S2E and QSYM with statistical significance; on some benchmarks, it even achieves better performance than the source-based SymCC. Moreover, our tool has found a previously unknown vulnerability in the well-tested libarchive library, demonstrating its utility in testing real-world software.

View More Papers

Differentially Private Health Tokens for Estimating COVID-19 Risk

David Butler, Chris Hicks, James Bell, Carsten Maple, and Jon Crowcroft (The Alan Turing Institute)

Read More

Data Poisoning Attacks to Deep Learning Based Recommender Systems

Hai Huang (Tsinghua University), Jiaming Mu (Tsinghua University), Neil Zhenqiang Gong (Duke University), Qi Li (Tsinghua University), Bin Liu (West Virginia University), Mingwei Xu (Tsinghua University)

Read More

Processing Dangerous Paths – On Security and Privacy of...

Jens Müller (Ruhr University Bochum), Dominik Noss (Ruhr University Bochum), Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Jörg Schwenk (Ruhr University Bochum)

Read More

Reinforcement Learning-based Hierarchical Seed Scheduling for Greybox Fuzzing

Jinghan Wang (University of California, Riverside), Chengyu Song (University of California, Riverside), Heng Yin (University of California, Riverside)

Read More