Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Fraudsters often use the promise of free goods as a lure for victims who are convinced to complete online tasks but ultimately receive nothing. Despite much work characterizing these "giveaway scams," no human subjects research has investigated how users interact with them or what factors impact victimization. We conducted a scenario-based experiment with a sample of American teenagers (n = 85) and adult crowd workers (n = 205) in order to investigate how users reason about and interact with giveaway scams advertised in YouTube videos and to determine whether teens are more susceptible than adults. We found that most participants recognized the fraudulent nature of the videos, with only 9.2% believing the scam videos offered legitimate deals. Teenagers did not fall victim to the scams more frequently than adults but reported more experience searching for terms that could lead to victimization. This study is among the first to compare the interactions of adult and teenage users with internet fraud and sheds light on an understudied area of social engineering.

View More Papers

CASPR: Context-Aware Security Policy Recommendation

Lifang Xiao (Institute of Information Engineering, Chinese Academy of Sciences), Hanyu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Aimin Yu (Institute of Information Engineering, Chinese Academy of Sciences), Lixin Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Dan Meng (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

MineShark: Cryptomining Traffic Detection at Scale

Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More

Fuzzing Space Communication Protocols

Stephan Havermans (IMDEA Software Institute), Lars Baumgaertner, Jussi Roberts, Marcus Wallum (European Space Agency), Juan Caballero (IMDEA Software Institute)

Read More