Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Fraudsters often use the promise of free goods as a lure for victims who are convinced to complete online tasks but ultimately receive nothing. Despite much work characterizing these "giveaway scams," no human subjects research has investigated how users interact with them or what factors impact victimization. We conducted a scenario-based experiment with a sample of American teenagers (n = 85) and adult crowd workers (n = 205) in order to investigate how users reason about and interact with giveaway scams advertised in YouTube videos and to determine whether teens are more susceptible than adults. We found that most participants recognized the fraudulent nature of the videos, with only 9.2% believing the scam videos offered legitimate deals. Teenagers did not fall victim to the scams more frequently than adults but reported more experience searching for terms that could lead to victimization. This study is among the first to compare the interactions of adult and teenage users with internet fraud and sheds light on an understudied area of social engineering.

View More Papers

Kronos: A Secure and Generic Sharding Blockchain Consensus with...

Yizhong Liu (Beihang University), Andi Liu (Beihang University), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhuocheng Pan (Beihang University), Yinuo Li (Xi’an Jiaotong University), Jianwei Liu (Beihang University), Song Bian (Beihang University), Mauro Conti (University of Padua)

Read More

SketchFeature: High-Quality Per-Flow Feature Extractor Towards Security-Aware Data Plane

Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Read More

Diffence: Fencing Membership Privacy With Diffusion Models

Yuefeng Peng (University of Massachusetts Amherst), Ali Naseh (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

TrajDeleter: Enabling Trajectory Forgetting in Offline Reinforcement Learning Agents

Chen Gong (University of Vriginia), Kecen Li (Chinese Academy of Sciences), Jin Yao (University of Virginia), Tianhao Wang (University of Virginia)

Read More