Wenhao Wang (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Linke Song (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Benshan Mei (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Shuang Liu (Ant Group), Shijun Zhao (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Shoumeng Yan (Ant Group), XiaoFeng Wang (Indiana University Bloomington), Dan Meng (Institute of Information Engineering, CAS), Rui Hou (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS)

Integrity is critical for maintaining system security, as it ensures that only genuine software is loaded onto a machine. Although confidential virtual machines (CVMs) function within isolated environments separate from the host, it is important to recognize that users still encounter challenges in maintaining control over the integrity of the code running within the trusted execution environments (TEEs). The presence of a sophisticated operating system (OS) raises the possibility of dynamically creating and executing any code, making user applications within TEEs vulnerable to interference or tampering if the guest OS is compromised.

To address this issue, this paper introduces NestedSGX, a framework which leverages virtual machine privilege level (VMPL), a recent hardware feature available on AMD SEV-SNP to enable the creation of hardware enclaves within the guest VM. Similar to Intel SGX, NestedSGX considers the guest OS untrusted for loading potentially malicious code. It ensures that only trusted and measured code executed within the enclave can be remotely attested. To seamlessly protect existing applications, NestedSGX aims for compatibility with Intel SGX by simulating SGX leaf functions. We have also ported the SGX SDK and the Occlum library OS to NestedSGX, enabling the use of existing SGX toolchains and applications in the system. Performance evaluations show that context switches in NestedSGX take about 32,000 -- 34,000 cycles, approximately $1.9times$ -- $2.1times$ higher than that of Intel SGX. NestedSGX incurs minimal overhead in most real-world applications, with an average overhead below 2% for computation and memory intensive workloads and below 15.68% for I/O intensive workloads.

View More Papers

RAIFLE: Reconstruction Attacks on Interaction-based Federated Learning with Adversarial...

Dzung Pham (University of Massachusetts Amherst), Shreyas Kulkarni (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

Defending Against Membership Inference Attacks on Iteratively Pruned Deep...

Jing Shang (Beijing Jiaotong University), Jian Wang (Beijing Jiaotong University), Kailun Wang (Beijing Jiaotong University), Jiqiang Liu (Beijing Jiaotong University), Nan Jiang (Beijing University of Technology), Md Armanuzzaman (Northeastern University), Ziming Zhao (Northeastern University)

Read More

Try to Poison My Deep Learning Data? Nowhere to...

Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

Read More

CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian...

Kaiyuan Zhang (Purdue University), Siyuan Cheng (Purdue University), Guangyu Shen (Purdue University), Bruno Ribeiro (Purdue University), Shengwei An (Purdue University), Pin-Yu Chen (IBM Research AI), Xiangyu Zhang (Purdue University), Ninghui Li (Purdue University)

Read More