Hengkai Ye (The Pennsylvania State University), Hong Hu (The Pennsylvania State University)

Code injection was a favored technique for attackers to exploit buffer overflow vulnerabilities decades ago. Subsequently, the widespread adoption of lightweight solutions like write-xor-execute (W⊕X) effectively mitigated most of these attacks by disallowing writable-and-executable memory. However, we observe multiple concerning cases where software developers accidentally disabled W⊕X and reintroduced executable stacks to popular applications. Although each violation has been properly fixed, a lingering question remains: what underlying factors contribute to these recurrent mistakes among developers, even in contemporary software development practices?

In this paper, we conduct two investigations to gain a comprehensive understanding of the challenges associated with properly enforcing W⊕X in Linux systems. First, we delve into program-hardening tools to assess whether experienced security developers consistently catch the necessary steps to avoid executable stacks. Second, we analyze the enforcement of W⊕X on Linux by inspecting the source code of the compilation toolchain, the kernel, and the loader. Our investigation reveals that properly enforcing W⊕X on Linux requires close collaboration among multiple components. These tools form a complex chain of trust and dependency to safeguard the program stack. However, developers, including security researchers, may overlook the subtle yet essential .note.GNU-stack section when writing assembly code for various purposes, and inadvertently introduce executable stacks. For example, 11 program-hardening tools implemented as inlined reference monitors (IRM) introduce executable stacks to all “hardened” applications. Based on these findings, we discuss potential exploitation scenarios by attackers and provide suggestions to mitigate this issue.

View More Papers

Poster: Understanding User Acceptance of Privacy Labels: Barriers and...

Jingwen Yan (Clemson University), Mohammed Aldeen (Clemson University), Jalil Harris (Clemson University), Kellen Grossenbacher (Clemson University), Aurore Munyaneza (Texas Tech University), Song Liao (Texas Tech University), Long Cheng (Clemson University)

Read More

Secret Spilling Drive: Leaking User Behavior through SSD Contention

Jonas Juffinger (Graz University of Technology), Fabian Rauscher (Graz University of Technology), Giuseppe La Manna (Amazon), Daniel Gruss (Graz University of Technology)

Read More

Power-Related Side-Channel Attacks using the Android Sensor Framework

Mathias Oberhuber (Graz University of Technology), Martin Unterguggenberger (Graz University of Technology), Lukas Maar (Graz University of Technology), Andreas Kogler (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More

Reinforcement Unlearning

Dayong Ye (University of Technology Sydney), Tianqing Zhu (City University of Macau), Congcong Zhu (City University of Macau), Derui Wang (CSIRO’s Data61), Kun Gao (University of Technology Sydney), Zewei Shi (CSIRO’s Data61), Sheng Shen (Torrens University Australia), Wanlei Zhou (City University of Macau), Minhui Xue (CSIRO's Data61)

Read More