Sunil Manandhar (IBM T.J. Watson Research Center), Kapil Singh (IBM T.J. Watson Research Center), Adwait Nadkarni (William & Mary)

Privacy regulations are being introduced and amended around the globe to effectively regulate the processing of consumer data. These regulations are often analyzed to fulfill compliance mandates and to aid the design of practical systems that improve consumer privacy. However, at present, this is done manually, making the task error-prone, while also incurring significant time, effort, and cost for companies. This paper describes the design and implementation of ARC, a framework that transforms unstructured and complex regulatory text into a structured representation, the ARC tuple(s), which can be queried to assist in the analysis and understanding of regulations. We demonstrate ARC’s effectiveness in extracting three forms of tuples with a high F-1 score (avg. 82.1% across all three) using four major privacy regulations: CCPA, GDPR, VCDPA, and PIPEDA. We then build ARCBert that identifies semantically similar phrases across regulations, enabling compliance analysts to identify common requirements. We run ARC on 16 additional privacy regulations and identify 1,556 ARC tuples and clusters of semantically similar phrases. Finally, we extend ARC to evaluate the compliance of privacy policies by comparing it against the disclosure requirements in the four regulations. Our empirical evaluation with the privacy policies of S&P 500 companies finds 476 missing disclosures, which when manually validated, result in 71.05% true positives, as well as the discovery of 288 additional missing disclosures from the partial matches identified by ARC.

View More Papers

MirageFlow: A New Bandwidth Inflation Attack on Tor

Christoph Sendner (University of Würzburg), Jasper Stang (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Raveen Wijewickrama (University of Texas at San Antonio), Murtuza Jadliwala (University of Texas at San Antonio)

Read More

GTrans: Graph Transformer-Based Obfuscation-resilient Binary Code Similarity Detection

Yun Zhang (Hunan University), Yuling Liu (Hunan University), Ge Cheng (Xiangtan University), Bo Ou (Hunan University)

Read More

Threats Against Satellite Ground Infrastructure: A retrospective analysis of...

Jessie Hamill-Stewart (University of Bristol and University of Bath), Awais Rashid (University of Bristol)

Read More

Acoustic Keystroke Leakage on Smart Televisions

Tejas Kannan (University of Chicago), Synthia Qia Wang (University of Chicago), Max Sunog (University of Chicago), Abraham Bueno de Mesquita (University of Chicago Laboratory Schools), Nick Feamster (University of Chicago), Henry Hoffmann (University of Chicago)

Read More