Simon Langowski (Massachusetts Institute of Technology), Sacha Servan-Schreiber (Massachusetts Institute of Technology), Srinivas Devadas (Massachusetts Institute of Technology)

Trellis is a mix-net based anonymous broadcast system with cryptographic security guarantees. Trellis can be used to anonymously publish documents or communicate with other users, all while assuming full network surveillance. In Trellis, users send messages through a set of servers in successive rounds. The servers mix and post the messages to a public bulletin board, hiding which users sent which messages.

Trellis hides all network-level metadata, remains robust to changing network conditions, guarantees availability to honest users, and scales with the number of mix servers. Trellis provides three to five orders of magnitude faster performance and better network robustness compared to Atom, the state-of-the-art anonymous broadcast system with a similar threat model. In achieving these guarantees, Trellis contributes: (1) a simpler theoretical mixing analysis for a routing mix network constructed with a fraction of malicious servers, (2) anonymous routing tokens for verifiable random paths, and (3) lightweight blame protocols built on top of onion routing to identify and eliminate malicious parties.

We implement and evaluate Trellis in a networked deployment. With 64 servers located across four geographic regions, Trellis achieves a throughput of 220 bits per second with 100,000 users. With 128 servers, Trellis achieves a throughput of 320 bits per second. Trellis’s throughput is only 100 to 1000× slower compared to Tor (which has 6,000 servers and 2M daily users) and is therefore potentially deployable at a smaller “enterprise” scale. Our implementation is open-source.

View More Papers

Private Certifier Intersection

Bishakh Chandra Ghosh (Indian Institute of Technology Kharagpur), Sikhar Patranabis (IBM Research - India), Dhinakaran Vinayagamurthy (IBM Research - India), Venkatraman Ramakrishna (IBM Research - India), Krishnasuri Narayanam (IBM Research - India), Sandip Chakraborty (Indian Institute of Technology Kharagpur)

Read More

Investigating User Behaviour Towards Fake News on Social Media...

Yasmeen Abdrabou (University of the Bundeswehr Munich), Elisaveta Karypidou (LMU Munich), Florian Alt (University of the Bundeswehr Munich), Mariam Hassib (University of the Bundeswehr Munich)

Read More

Anomaly Detection in the Open World: Normality Shift Detection,...

Dongqi Han (Tsinghua University), Zhiliang Wang (Tsinghua University), Wenqi Chen (Tsinghua University), Kai Wang (Tsinghua University), Rui Yu (Tsinghua University), Su Wang (Tsinghua University), Han Zhang (Tsinghua University), Zhihua Wang (State Grid Shanghai Municipal Electric Power Company), Minghui Jin (State Grid Shanghai Municipal Electric Power Company), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia…

Read More

podft: On Accelerating Dynamic Taint Analysis with Precise Path...

Zhiyou Tian (Xidian University), Cong Sun (Xidian University), Dongrui Zeng (Palo Alto Networks), Gang Tan (Pennsylvania State University)

Read More