Jian Cui (Indiana University), Hanna Kim (KAIST), Eugene Jang (S2W Inc.), Dayeon Yim (S2W Inc.), Kicheol Kim (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST), Xiaojing Liao (Indiana University)

Twitter is recognized as a crucial platform for the dissemination and gathering of Cyber Threat Intelligence (CTI). Its capability to provide real-time, actionable intelligence makes it a indispensable tool for detecting security events, helping security professionals cope with ever-growing threats. However, the large volume of tweets and inherent noises of human-crafted tweets pose significant challenges in accurately identifying security events. While many studies tried to filter out event-related tweets based on keywords, they are not effective due to their limitation in understanding the semantics of tweets. Another challenge in security event detection from Twitter is the comprehensive coverage of security events. Previous studies emphasized the importance of early detection of security events, but they overlooked the importance of event coverage. To cope with these challenges, in our study, we introduce a novel event attribution-centric tweet embedding method to enable the high precision and coverage of events. Our experiment result shows that the proposed method outperforms existing text and graph-based tweet embedding methods in identifying security events. Leveraging this novel embedding approach, we have developed and implemented a framework, textit{Tweezers}, that is applicable to security event detection from Twitter for CTI gathering. This framework has demonstrated its effectiveness, detecting twice as many events compared to established baselines. Additionally, we have showcased two applications, built on textit{Tweezers} for the integration and inspection of security events, i.e., security event trend analysis and informative security user identification.

View More Papers

Do We Really Need to Design New Byzantine-robust Aggregation...

Minghong Fang (University of Louisville), Seyedsina Nabavirazavi (Florida International University), Zhuqing Liu (University of North Texas), Wei Sun (Wichita State University), Sundararaja Iyengar (Florida International University), Haibo Yang (Rochester Institute of Technology)

Read More

VulShield: Protecting Vulnerable Code Before Deploying Patches

Yuan Li (Zhongguancun Laboratory & Tsinghua University), Chao Zhang (Tsinghua University & JCSS & Zhongguancun Laboratory), Jinhao Zhu (UC Berkeley), Penghui Li (Zhongguancun Laboratory), Chenyang Li (Peking University), Songtao Yang (Zhongguancun Laboratory), Wende Tan (Tsinghua University)

Read More

Moneta: Ex-Vivo GPU Driver Fuzzing by Recalling In-Vivo Execution...

Joonkyo Jung (Department of Computer Science, Yonsei University), Jisoo Jang (Department of Computer Science, Yonsei University), Yongwan Jo (Department of Computer Science, Yonsei University), Jonas Vinck (DistriNet, KU Leuven), Alexios Voulimeneas (CYS, TU Delft), Stijn Volckaert (DistriNet, KU Leuven), Dokyung Song (Department of Computer Science, Yonsei University)

Read More

Characterizing the Impact of Audio Deepfakes in the Presence...

Magdalena Pasternak (University of Florida), Kevin Warren (University of Florida), Daniel Olszewski (University of Florida), Susan Nittrouer (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More